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Abstract Understanding how behavior affects consumer plug load device energy 
usage provides improved guidance on the development of testing standards, volun-
tary agreements, and incentive programs. In this study the authors demonstrated an 
approach for developing and analyzing device use profiles for common residential 
devices, to determine the range of energy usage bounds in plausible real-world 
usage scenarios and the relative impact of usage types. Three aspects of how devices 
are used were taken into consideration: the total amount of active use per day, the 
pattern of that use over the course of the day (e.g., how many periods of use), and 
power management settings and behaviors. For each aspect, at least three levels 
were specified (low, moderate, high). The bounds of each category were justified 
based on observed or reported device usage and the features of the specific device. 
Device use profiles were constructed using all possible combinations of the levels 
of the three aspects such that the impact of each aspect was evaluated while the 
other aspects were held constant in simulated operation. For each device, power 
consumption measurements were taken for each steady-state and transitional state 
observed in normal usage, and operational state chains were determined. A simula-
tion tool, the Plug Load Simulator Suite 1.2 (PLSim), was developed for inputting 
device-state test results and modeling energy consumption across device use pro-
files. Multivariate regression models were used to identify the proportion of vari-
ance in energy consumption across profiles that was explained by each of the three 
behavior aspects. One device—the satellite set-top box—showed almost no varia-
tion across profiles: energy consumption was not responsive to either the amount of 
active use or to power management settings. Power management was a significant 
factor predicting energy consumption for all ten remaining devices. Devices varied 
in the effects of the active use and pattern of use aspects. Four patterns are exhibited: 
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(1) strong impacts of both active use and power management aspects, with active 
almost as high as power management (4K and HD televisions); (2) significant 
impact of the active use aspect but much lower than the impact for power manage-
ment (streaming device, video game console, desktop computer, and laptop com-
puter); (3) significant impact for power management only (sound bar and both pod 
coffee makers); and (4) significant impact of pattern of use that exceeds that of 
power management (rice cooker). Assessments of the implications for each device 
class, and extensions for other similar devices, are discussed at length in the report; 
overall conclusions are summarized here. This approach provides an objective 
means to classify the impact of aspects of device usage between users and across 
devices within a specific category and shows promise for future evaluations.

1  Introduction

Utility companies have become increasingly more interested in understanding the 
real-world energy usage of devices in homes in their efforts toward a more sustain-
able grid. A particularly difficult area of this investigation is varying behavioral 
energy usages of miscellaneous electric loads (MEL) and plug/process loads 
(henceforth collectively referred to as plug loads). While many households contain 
the same plug load devices, there is a large range of usages from the standard usage 
estimates of how these devices are being used in the home which leads to the ques-
tion of how to prepare the grid for these highly variable loads. With the total number 
of consumer electronics devices expected to rise in each household [1, 2], finding 
strategies to manage energy consumption from plug loads in current and new cate-
gories of devices has become very important.

Standard energy testing, reporting, and modeling protocols provide manufactur-
ers, regulatory authorities, and consumers a way to evaluate energy use and to com-
pare energy efficiency options. However, the single point evaluation tests on 
individual devices are not able to capture how these devices are used in real-life 
situations, when they are often connected to other related devices as a part of a net-
work, and subject to various users’ behavior. These issues lead to a significant road-
block when trying to assess the true saving potential of emerging technologies or to 
effectively communicate results to utilities and consumers [3].

Plug loads in general continue to be a growing source of residential and com-
mercial total building loads in part also due to efficiency gains for space heating, 
water heating and lighting and due to new categories of devices and increased num-
bers of current device categories in use (see Fig.  1) [1, 4]. Considering macro 
changes, both the average living space and total numbers of devices have increased 
over time. Cisco estimates 13 devices per person by 2021 [5]. The average home 
boasts now more than 7 screens and 60% of a nationally representative sample of 
survey respondents use devices more than 3 h per day [6]. The 2016 EIA energy 
outlook to 2040 predicts miscellaneous loads (in which plug loads are included) 
will increase by with an adjusted average growth rate of 1.4% per year to 2040 with 
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a commercial growth of 11.5% [7]. Audio systems and game consoles are major 
annual consumers [8], with electric grills, coffee machines acting as major active 
load devices [9, 10]. Considering both commercial and residential applications, 
plug-in devices are responsible for approximately two-third of California’s residen-
tial electricity consumption, including 20% for TVs and office equipment and 
another 11% for miscellaneous devices [11]. It is estimated that plug-in equipment 
and miscellaneous loads will be responsible for 70% of electricity demand growth 
from 2015 to 2024 [12]. Therefore, while household plug load devices are individu-
ally low in energy demand, they collectively pose major challenges to future sus-
tainability plans, such as California’s Zero Net Energy (ZNE) initiative for all new 
homes set for 2020.

Assessing potential intervention strategies for both utility energy efficiency and 
demand response programs within multiple sub-classes of plug loads requires 
understanding the root cause source of waste. For analysis, by comparing variations 
in usage against controlled parameters, changes in energy use can be localized to 
specific, energy efficiency efforts can be applied in two main modes, passive and 
active. The next point is the boosting of the capability of power management fea-
tures, this includes expanding the capability of features present or adding additional 
features.

2  Methods

In this study, we demonstrate a new modeling approach for estimating how energy 
usage can be impacted by behavior, across multiple devices and categories. This is 
essentially the inverse of standardized testing, in which one test protocol is applied 
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to multiple models of the same type of device. Instead, we examine one model of 
each type of device, holding the device parameters constant, and vary the test 
parameters to reflect the range of ways it could be used in real-world conditions.

2.1  Device Selection and Testing

First, a set of residential plug loads was identified, prioritizing those where usage 
logically affects energy consumptions; for instance, devices that must always stay 
on were omitted. The 10 device types selected include: 4K (UHD) television, HD 
television, game console, satellite set-top box, audio sound bar, streaming device, 
desktop computer, laptop computer, pod coffee maker (two models), and rice cooker.

Second, each device was tested to determine all the states observed during use 
(including warming up, idle, and powering down periods) and the power consump-
tion during each state. This step required a comprehensive examination of the oper-
ating conditions and mechanisms of each device, particularly as they affected the 
timing and stages of shifting from off or idle into active use, and from various active 
modalities into low-power and soft-off states. At this stage, all the power manage-
ment functions were also examined and assessed for their implications for energy 
use. For details on the extensive testing performed in the larger project, see [13].

2.2  Device Usage Profiles

Third, device use profiles were constructed that vary on three main aspects of how 
the device is used in real-life situations:

 1. How much the device is used per day (Active)
 2. The timing or pattern of that usage (Pattern)
 3. What power management settings or user behaviors affect efficient use (PM)

This approach was developed in an earlier project conducted using the SIM 
Home testing lab [3]. For each aspect, at least three levels are defined: usually low, 
moderate, and high. Whenever available, ENERGY STAR testing estimates for 
amount of active use were used to establish the moderate or standard level. Survey 
data on how devices were used in homes was analyzed to determine the reasonable 
range: the median was used for “moderate” active use, while the 10th percentile was 
considered “low” usage and the 90th percentile was considered “high” usage. See 
the first SIM Home report for more detail [3]. In the absence of any quantitative 
data, assumptions were made about realistic use cases.

For a given duration of use, the number of periods throughout the day could 
potentially affect energy usage. Many devices incur transition costs, such as warm 
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up or cool down times, or experience idle periods prior to entering a sleep or standby 
mode. The pattern aspect reflect this, with “low” indicating that all the usage 
occurred in a single period, “moderate” being two periods, and “high” being more 
periods. For instance, 4 h of computer use may occur all in one sitting or be divided 
into two periods of 2 h, or even more periods of shorter duration. For devices with 
automatic standby settings, additional pattern levels were created to reflect varied 
periods between usage periods: for instance, if a device idles for an hour before 
transitioning to a low-power mode, whether the next use is in 30 min versus 4 h 
affects the amount of time spent idling.

The power management aspect affects what state the device is in when it is not 
being used. This involves two factors: whether automatic power management set-
tings are enabled (and if so, at what delay setting) and whether the user turns the 
device off when finished or not. Here, the “moderate” level is set where the user 
does not act but the device is set at the factory-set automatic settings for transition-
ing off or to sleep mode when not used. “High” PM is where the user turns off the 
device regularly when it is not used and/or engages any automatic PM settings at 
high levels. “Low” PM is when where any automatic PM features are disabled (if 
possible) and the user never turns the device off. Given the great variation possible 
with PM behaviors, many devices were given more than three levels of PM to better 
reflect real-life conditions.

A set of device use profiles was created for each device by combining all levels 
of all three aspects. The profiles are represented in the form “active-pattern-PM,” so 
low-high-mod means Active-low, Pattern-high, PM-mod. A device that has three 
levels for each aspect which are all compatible would thus have 27 device use pro-
files, ranging from low-low-low to high-high-high. A device with multiple levels of 
any aspect would have more profiles. Some levels of active and pattern cannot be 
logically combined, resulting in fewer profiles. For instance, 13  h of television 
watching (Active-high) could not be divided into four periods with 5 h between 
(Pattern-high1) and still be contained within the 24 h period. Other combinations 
were not plausible: for instance, a half hour of television watching (Active-low) 
would not reasonably be broken up into four periods over the course of the day 
(Pattern-high1 and high2).

For each device, a “standard profile” was determined which matched the 
ENERGY STAR or other standardized testing protocol or, in the absence of such, 
approximated a standardized protocol. The standard profile represented Active-mod 
(the median amount of active use), Pattern-low (usage all in one period), and 
PM-mod (factory PM settings, no user intervention).

A full description of the device usage profiles used for all devices can be found 
in the second SIM Home report [13].
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2.3  Energy Use Modeling

The Plug Load Simulator Suite 1.2 (PLSim)1 is an open-source simulation tool that 
was developed in support of this project. PLSim is used to rapidly tabulate energy 
usage based on device states as modeled through the profiles. Device testing was 
used to verify state and general usage along with total energy consumption. The 
state model was developed and verified against the actual device using a modeled 
usage plan to verify the developed state mode. This tool is universal for all modeled 
devices and was the primary tool used in this work for energy modeling. A per- 
device, state-wise energy usage XML database is generated by testing device opera-
tion per aforementioned testing approaches. This database provides a list of states. 
A developed time-based (temporal) profile maps the time the device spends in a 
given period for a given action to energy usage. Daily energy usage is calculated as 
a temporal combination of all event states during a 24 h period (see Eq. 1). In this 
relationship PSl is used to model the lowest energy usage state (assumed to be the 
lowest power modeled state) while Nx, Px, Tx, are used to model the average power 
consumption and number of periods a state exists during a 24 h period.

Calculation of daily energy usage based on generic event frequency and 
classification:

Shown explicitly with two terms:

 
EC
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Where:

Variable Value

EC Daily energy consumption in kWh for the modeled system.
NX(shown: 1,2) Average number of events of a particular event of a given duration that occurs in 

a 24 h period: the value for x increments for each event.
TX(shown: 1,2) Average duration (in hours) for a particular event which occurs in the 24 h 

period: the value for x increments for each event.
PX(shown: 1,2) Average power consumption (in watts) for a particular event which occurs in the 

24 h period: the value for x increments for each event.
Pl Average power consumption (in watts) for the lowest power operational mode, 

such as soft-off, sleep mode, or standby mode.

The set of device use profiles were then programmed into the PLSim tool that 
CalPlug developed. Adding power consumption data from in-house testing of the 
device in all possible states into PLSim produces the total simulated energy 
consumption for each profile. For comparison, lower and upper boundaries are also 

1 See: https://github.com/CalPlug/PlugLoadSimulator
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modeled, showing the energy consumption if the device remained in the lowest 
usage state possible or the highest usage state possible for 24 h.

2.4  Energy Use Analyses

The PLSim calculations produced estimates of total 24-h energy consumption for 
each device use profile for each device. These were assessed in three steps.

For each device, a graph showing the energy consumption across profiles was 
produced, ordered so that the overall patterns of different consumption results could 
be visually attributed to changes in active use, pattern, or PM. This descriptive step 
helped give insights into the data, and to verify and make sense of the summary 
results shown later. To illustrate, the graph of energy use estimates across device use 
profiles is shown below for the desktop computer that was tested (see Fig. 2). The 
first three profiles all have low active use (30 min) and low pattern (that is, all at one 
time), and differ only on PM. The pattern shows a very high energy consumption for 
profile #1, with PM-low (disabled sleep settings) and much lower for those with 
PM-mod or PM-high. That same pattern repeats through the rest of the graph. The 
energy consumption rises with the amount of active use, especially for profiles with 
moderate or high PM. However, the primary distinguishing pattern continues to be 
the much higher energy usage for profiles with PM-low versus all others. As these 
graphs are illustrative rather than analytical, they are presented illustratively at this 
point in the discussion (Sect. 3) here (see [13]).

Next, for each device, simulated energy consumption for the standard device use 
profile was compared those with the median, highest, and lowest energy consump-
tion estimates, and the range. These provide quantitative assessment of how much 
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higher or lower energy consumption could be for a particular device in at least some 
homes, compared to estimates based on the standard testing protocol. Although the 
simulated results do not allow for comparisons across real households, they do help 
identify potential problem areas that deserve additional scrutiny.

Finally, multivariate regression analyses were run. For each device, the number 
of device use profiles was the sample, the estimated energy consumption for each 
profile was the dependent variable, and the predictor (independent) variables were 
the levels of active, pattern, and PM. The standard device use profile is the default 
in all models. This means Active-mod is the omitted variable and the regression 
tests the effect of Active-low versus Active-mod, and the effect of Active-high ver-
sus Active-mod. Likewise, Pattern-low and PM-mod are the omitted variables, with 
the effects of the other levels of each aspect compared against them. This allows the 
model to show which levels of which aspect significantly differ from each other. 
The regression analyses also indicate how much of the variance in energy consump-
tion is explained by the three different aspects (e.g., whether variation in power 
management matters more for energy consumption than amount of active use).

3  Results

3.1  Range of Energy Consumption Across Profiles, by Device

Given a reasonable range of usage behaviors, what energy consumption results 
would we observe in these tests? That is, if we assumed that all devices in all house-
holds were operated according to the standard device use profile, how inaccurate 
would our estimates be about the highest- and lowest-usage households? If the 
range for a device is relatively small, this suggests that standard tests would give 
good estimates across a range of households. However, if the device’s energy con-
sumption is high across all usage patterns, perhaps additional development of low- 
power states could help lower consumption during non-active periods. Alternately, 
if the range of energy consumption across profiles is very large, especially in terms 
of values much higher than the standard testing profile, this points to possible inter-
vention points either in reducing active use consumption or in promoting more 
effective power management.

The ranges of energy consumption for the highest and lowest profile, compared 
to that of the standard profile, are presented in Fig. 3. Three general patterns are 
observed: devices with very small ranges; devices with low or moderate ranges, 
either mostly higher or mostly lower than the standard profile; and devices with 
large ranges that span in both directions from the standard profile but err more on 
the side of higher values than lower.

For instance, the standard profiles for pod coffee makers exhibit almost as high 
of energy consumption as for the 4K television, and higher than the HD television. 
However, almost all the variations in how pod coffee makers are used result in lower 
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consumption, whereas the top range for televisions is substantially higher. The rice 
cooker shows the opposite pattern, with other ways of using the device resulting in 
higher energy consumption than the standard profile. The same is true for the desk-
top computer, game console and set-top box: the standard profiles for these devices 
show similar energy consumption. For both the desktop computer and game con-
sole, variation in usage can lead to higher consumption, whereas there is almost no 
variation by usage for the set-top box.

The range between the minimum and maximum should be considered in the 
context of the median energy consumption for that device. For instance, a range of 
50 Wh would be small if the device’s median energy consumption was 1000 Wh but 
substantial if it was 100 Wh. Logically, it is possible for the maximum profile to be 
more than 100% higher than the standard profile (that is, use more than twice as 
much energy) but the difference between the standard and minimum profiles must 
be less than 100% than the standard profile, probably much less (as 100% lower 
would mean zero energy consumption for the minimum profile).

Among the entertainment devices, the two televisions show the largest energy 
consumption ranges, but the range for the video game console is also high, espe-
cially compared to the small ranges for the sound bar and set-top box. The stream-
ing device shows a large range, but the energy consumption of the standard profile 
is so low that this is not substantively important. The television profiles’ energy 
consumption estimates range by almost 300% of the standard device use profile: 
most of that represents how much higher the maximum profile is, but the minimum 
profiles save an impressive 93–94% energy compared to the standard profile. By 
contrast, the satellite set-top box shows the lowest ranges for all the device shown 

0

500

1000

1500

2000

2500

3000

3500

4000

Highest profile Lowest profile Standard

Fig. 3 Range of daily energy consumption of profiles, by device

State Based Approximation of Behavior Contribution to Energy Usage



328

here. For most of these devices, the maximum estimates are more impactful on 
variation in energy consumption than the minimum estimates.

The desktop computer tested here uses substantially more energy in the standard 
device use profile than the laptop computer. However, their relative ranges are simi-
lar. The minimum profiles for both computers save a similar proportion of energy 
relative to the standard profiles, but the desktop’s maximum profile uses proportion-
ally more than that of the laptop.

The two pod coffee makers have very similar results. For both, the range is about 
90% of the standard profile’s energy consumption, and almost all of that is due to 
the minimum usage profile being substantially lower than the standard profile. Note 
that pod coffee makers have power management features available but are shipped 
with those settings disabled, so the moderate PM level has no low-power mode, and 
all PM levels are more energy saving than the standard profile.

By contrast, the rice cooker shows a very large range of energy consumption, 
with the maximum being much higher than the standard profile.

3.2  Effects of Usage Aspects

The team used regression models to evaluate what proportion of the variation in 
modeled energy consumption across device use profiles can be attributed to the 
three aspects tested here, given the specific definitions of each aspect used. 
Particularly for devices with a large range of estimated values, is the deviation from 
the standard default device use profile largely due to differences in the amount of 
active use, in the timing or pattern of that use, or in the power management settings 
or behaviors?

For each device, four models were run: one for each aspect alone and one full 
model including predictor variables for all three aspects. The sample for each model 
is the set of device use profiles for that device, and the dependent variable is the 
energy consumption calculated for each profile. Each regression model produces an 
R2 statistic indicating the proportion of the variance in the dependent variable 
explained by the parameters in that specific model. For example, if the R2 statistic 
for the Active Model were 0.50, that would indicate that 50% of the variance in 
energy consumption across the device use profiles was due to whether they had 
high, moderate, or low active use.

The results of the regression models are summarized in Fig.  4. The asterisks 
indicate which models were statistically significant. These results reveal major dif-
ferences in the relative importance of active use, pattern, and power management 
for energy consumption across these devices.

These effects should also be considered within the context of how much energy 
consumption varied across profiles for that device. For example, for the set-top box, 
power management explains 72% of the variance in energy consumption. However, 
compared to the standard profile for the set-top box, energy consumption only 
ranges from 2% lower to 4% higher across other profiles (see Table 1), so there is 
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essentially no variance to explain. For that reason, the set-top box is not discussed 
here. For the sound bar and the streaming device, the variation is higher as a per-
centage of the fairly low standard energy consumption although the range still rep-
resents a small increase or decrease in energy consumption.

4  Discussion

The impact of behavior on energy use is a major consideration to produce accurate 
evaluation of device energy consumption for both modeling and mitigation efforts. 
In this project, the authors evaluated the effects on energy consumption of three 
aspects of user behavior toward devices: the amount of active use, the pattern of that 
use, and power management. This method was applied to common residential plug 
load devices. Using carefully defined device use profiles, comparisons across pro-
files were used to identify the impact of each aspect, to prioritize and focus efforts 
to address improving energy usage in specific devices. Future testing and evaluation 
methods could expand upon this method to continue to refine procedures to match 
devices as they evolve, considering behavior and usage. The analyses in this report 
address two main questions. The first question is how large a range of energy con-
sumption outcomes the device use profiles generate for each device, based on 
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reasonable assumptions about the range of real-life usage. A follow-up to this ques-
tion is whether the range is primarily higher or lower than the standard profile pro-
duced by standardized testing protocols. If the range is fairly small or if it is evenly 
distributed, standardized tests are more likely to produce accurate estimates of real- 
life outcomes if averaged over a large number of households. However, if the range 
is very small, this raises a new concern: that the energy use of the device is not 
responding to the amount of time the device is actively being used and that any 
power management features are ineffective at saving energy.

The second question is how much of the variation in that range of energy con-
sumption outcomes across profiles is explained by differences in active use, versus 
by differences in pattern of use or differences in power management behaviors. 
Energy consumption is expected to vary by active use: if that is the main driver of 
energy use, then energy-saving strategies would logically focus on reducing the 
operational costs of active use for that device. If engaging power management 
options fails to save energy, that suggests those options are ineffective. However, if 
much of the variation attributable to power management behaviors results in higher 
energy usage, that suggests that power management options may not be effectively 
engaged by users, which prompts additional research and development into modes 
and user interfaces that will work in everyday usage. Although the device usage 
profiles are based on observed or self-reported behaviors as much as possible, sev-
eral assumptions had to be made when defining the levels of each aspect. Thus, any 
conclusions are limited by the extent to which the assumptions about average and 

Table 1 Summary of ranges and differences from standard profile

Std 
(Wh)

Median 
(Wh)

Min 
(Wh)

Min % 
from Std

Max 
(Wh)

Max % 
from Std

Range 
(Wh)

Range % 
of Std

4K Television 1305.1 1981.5 82.4 94 3746.7 187 3664.3 281
HD 
Television

667.4 743.3 48.5 93 1903.2 185 1854.7 278

Sound Bar 111.7 148.1 90.4 19 198.0 77 107.6 96
Set-top Box 669.9 684.6 654.1 2 699.7 4 45.7 7
Streaming 
Device

28.1 35.4 6.9 76 68.9 145 62.0 220

Video Game 
Console

556.9 644.2 303.5 46 1557.8 180 1254.3 225

Desktop 
Computer

609.5 1310.3 110.0 82 2472.5 306 2362.5 388

Laptop 
Computer

112.3 243.1 28.9 74 423.3 277 394.4 351

Pod Coffee 
Maker A

1076.9 639.9 189.0 82 1147.6 7 958.6 89

Pod Coffee 
Maker B

1046.4 535.7 123.3 88 1081.4 3 958.1 92

Rice Cooker 282.2 529.4 249.0 12 937.9 232 688.9 244
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also extreme behaviors (that is, behaviors at the 10th and 90th percentile) are 
accepted as reasonable.

The answers to both of these questions differed greatly across the plug load 
devices tested here. For that reason the discussion below focuses on specific devices, 
with the ordering adjusted to help compare similar device results.

5  Specific Devices

5.1  Televisions

The 4K television tested here uses almost twice as much energy in its standard pro-
file than the HD television (1305  Wh versus 667  Wh). However, the pattern of 
results for the two devices are otherwise similar. Both televisions produce a large 
range of energy consumption estimates across the profiles (3664 Wh or 281% of 
standard for 4K and 1855 Wh or 278% of standard for HD). In both cases, the upper 
range is twice as large as the lower range. For instance, for the 4K television, the 
lowest-use profile is only 82 Wh (lower by 94% of the standard profile) while the 
highest-use profile is 3747 Wh (higher by 187% of the standard use profile). This 
suggests that, to the extent that these device use profiles reflect real-life behavior 
patterns, estimates based on standard usage would underestimate total usage across 
households.

The high energy consumption for the standard profiles for these devices, espe-
cially for the 4K television, and the very high range in energy consumptions shown 
by the profiles (especially, higher than the standard profile), motivates a close look 
at the relative impact of the three device use aspects. The two televisions show a 
pattern not seen in other devices, in which the active use aspect is almost as strong 
of a predictor of variation in energy consumption as the power management aspect.

The pattern aspect does not significantly impact energy consumption for televi-
sions, which makes sense, given the lack of a substantial boot-up period.

As active use and power management are both important contributors to energy 
use for televisions, they provide avenues for potential energy savings. Reducing 
energy consumption during active use is already a main consideration in energy 
efficiency regulations aimed toward manufacturers. These results could encourage 
stricter regulations for devices such as televisions. Options that adjust the screen 
brightness can potentially save energy during active use, although not enough is 
known about how these features are used (or misused) in real households, and 
whether this behavior negates any possible savings.

On the other hand, improving power management options and their use could 
potentially save as much energy with less extensive modifications to the devices 
themselves. Both of these televisions have very low-power standby modes; the chal-
lenge is to transition the device into standby mode whenever feasible. Both televi-
sions have a feature that transitions the device to sleep after a delay period with no 

State Based Approximation of Behavior Contribution to Energy Usage



332

signal from the connected source. The feature for the 4K television has three delay 
settings from 15 min (default) to 60 min, while the HD television has only one delay 
setting, 10  min. This feature can potentially save substantial energy, but only in 
specific circumstances: when the television is receiving content from an external 
device (rather than through apps in a smart TV), and when the user either turns that 
device off when done or has that device set to sleep after a short period of inactivity. 
Otherwise, the sleep transition due to lack of signal will not activate.

The 4K television also has an auto-off feature that transitions to sleep mode in 
the absence of user input (i.e., through the remote control), but the lowest possible 
delay period is 4 h, which is the default setting. The HD television has no such auto- 
off feature. One relatively simple improvement would be providing such a feature in 
all televisions, and offering shorter delay period options, as short as 1 h, and making 
a 2-h delay the default setting. Informative user interfaces are essential for encour-
aging users to enable (or not disable) PM settings and to understand how to use 
them effectively, such as motivating explanations on the PM setting screen, and a 
signal that warns users of an impending sleep transition, so that they can easily 
avoid it by pressing a key on their remote control.

5.2  Video Game Console

The video game console tested here showed results closest to that of the HD televi-
sion in terms of its standard profile energy consumption (557 Wh) and its range of 
consumption across profiles (225%). However, the total range was not as large as 
for the HD television (1254 Wh versus 1855 Wh). Compared to televisions, the 
lower range for the video game console is smaller (lower by 46% of the standard 
profile) while the upper range is almost as large (higher by 180% of the standard 
profile). In other words, the video game console uses less energy than the HD televi-
sion (and much less than the 4K television), but a larger proportion of its estimated 
use is higher than the standard profile compared to lower than it.

Like several of the other devices, the video game console showed a large impact 
of power management on variation in energy consumption across devices, and a 
smaller but significant impact of active use. The difference between the two is less 
pronounced compared to most other devices (that is, a relatively larger impact of 
active), making the video game console more similar to the televisions in this 
respect. As such, the results support a similar approach to that described above for 
televisions, focusing on reducing consumption during active use and improving 
power management.

The video game console tested here has a standby state (called “rest”) which uses 
10.7 W compared to active game play at 69.5 W and a main system menu page 
which uses almost as much energy, at 63.7 W. When the user stops playing, the 
system automatically switches to the main system menu page and stays there until 
the user turns off the device or the automatic standby delay is activated. The standby 
delay period can be set from a minimum of 20 min to a maximum of 5 h. As with 
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any other device, effective user interface instructions may help motivate users to 
enable the standby option and use a shorter delay setting. Users may be especially 
reluctant to turn off gaming devices or let them sleep because of fears that their 
game progress will be lost, even if this concern is unfounded; added security and 
reassuring communication may be helpful here. Another point to raise is that the 
main system menu page, if not interacted with, is functioning similarly to a standby 
mode, and yet consumes almost the same power as actively gaming and continues 
to do so no matter how long the device goes unused. This suggests that exploring a 
“deep idle” mode, similar to that for computers, could save additional energy by 
pausing certain processes after some shorter period of inactivity.

5.3  Set-Top Box

The set-top box provided a unique pattern of all the devices tested here, in that the 
energy usage of the standard profile (678 Wh) was higher than many others, while 
the range of energy use estimates across profiles was negligible. The total range 
across profiles is only 45.7 Wh, or 4% above standard and 2% below standard. In 
fact, this mirrors the maximum boundary conditions range for this device, which 
consumes 699.7 Wh at the highest possible use state (active video) for 24 h versus 
654.0 Wh at the lowest possible use state (standby). This quantifies the extent to 
which the energy use for this device is not responsive to any variation in behavior: 
the device uses essentially the same energy while idle as while active. Indeed, the 
minimum and maximum device use profile results were the same as the minimum 
and maximum boundary conditions—that is, the least the device could possibly use 
(if on standby all day) and the most it could use (if actively used all day). This 
reflects the fact that set-top boxes must maintain continuous connections for pro-
gram and encryption services; thus, even in its lowest-power standby mode, it uses 
substantial power. As a result, users are limited in how much they can affect energy 
savings on this device.

Given the lack of variation in energy consumption across profiles, the multivari-
ate analyses explaining which use aspect caused that variation is moot. A closer 
examination of the operations of this device shows that the power management 
features of this device are completely ineffective, due to the high power usage of the 
idle and standby states relative to the active state. The device uses 27.25 W while in 
standby mode compared to 29.16 W while being actively used. The only power 
management option is a delay time of 4 h; this leaves the device in idle mode, which 
uses the same power as the active use. Ideally, shorter delay times would also be 
available and used as the default, but without an effective lower-power mode to 
transition into, this is of secondary concern.

If it is not possible to reduce relative power consumption during standby because 
too many of the same functions must operate even when the device is not in use, 
then the only avenue for saving energy with this device is to reduce consumption 
during the active use mode.
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5.4  Streaming Device

The streaming device uses the lowest energy for its standard profile of all the devices 
tested here, and shows one of the narrowest absolute range of energy consumption 
estimates, at 62.04 Wh between the lowest and highest device use profiles. This is 
only somewhat larger than the range for the set-top box (at 45.7 Wh). Because the 
streaming device has such low standard energy consumption, the proportional range 
is moderate compared to the other devices (76% lower and 145% higher than the 
standard profile). That said, relative to other devices tested here, there is not a sub-
stantial absolute amount of energy variation to explain, or to save.

The streaming device benefits from having an aggressive power management as 
a default setting, with an elaborate and engaging screensaver. The applications that 
run on this streaming device do not appear to contribute substantially to sleep block-
ing for idle states (device sitting at a paused video or menu). However the device 
will continue to play active video wastefully even if not being viewed, which sug-
gests one possible avenue of saving energy.

5.5  Sound Bar

When presented in comparison to other devices, the sound bar most closely resem-
bles the streaming device, in that the standard profile energy use is low compared to 
most others tested here (112 Wh), and the range between the lowest and highest 
device use profiles is relatively narrow (108 Wh, or 96% around the standard pro-
file). However, the absolute range of energy consumption is over twice as large as 
that for the streaming device, indicating more potential room for substantive energy 
savings.

The sound bar is one of the three devices where the majority of variation in 
energy consumption across profiles is explained by power management, and neither 
active use nor pattern are significant factors. Indeed, if all profiles using PM-low 
were removed, the maximum profile usage would drop by 48 Wh, cutting the range 
by almost half. This illustrates the importance of doing more research on how these 
devices are used in actual households, to help establish which assumptions are rea-
sonable for high and low behavioral usage.

5.6  Desktop and Laptop Computers

Desktop and laptop computers show a similar range of energy consumption esti-
mates (388% around the standard profile for the desktop and 351% for the laptop) 
and the pattern is similar as well, in that the upper range is much larger than the 
lower range. However, as the desktop computer uses so much more energy in its 
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standard profile than the laptop computer (609.5 Wh versus 112.3 Wh), the absolute 
range for the desktop is much larger, and the substantive effects of the higher-use 
profiles are even greater. Put another way, the highest-use profile for the desktop 
uses 1862.9 Wh more than the standard profile (306% more) whereas the highest- 
use profile for the laptop uses 311.0  Wh more than the standard profile (277% 
more). In terms of how much the standard profile potentially underestimates real- 
life usage, the desktop is second only to the 4K television. Depending on how many 
households exhibit higher-use profile behaviors compared to those who exhibit 
lower-use profile behaviors, average estimates assuming the standard use profile 
could be off by enough to negate variation in any other household plug load device.

Like the video game console, streaming device, and set-top box, active use and 
power management aspects are significant contributors for desktops, but power 
management has a much greater impact. Pattern of use shows more impact for com-
puters than for other devices covered so far, but not enough to achieve significance. 
In theory, pattern should make a difference for computers in that they automatically 
transition to a “long idle” state after being in a “short idle” state for 10 min, although 
the difference in power consumption is not large and may be overshadowed by other 
factors. Pattern may also interact with sleep settings in ways that are not represented 
by the average state use estimates utilized here, and which are beyond the scope of 
this report to explore.

Power management options and low-power states are well-developed in both 
desktops and laptops. As the PLSim results confirm, enabling sleep settings is a 
highly effective way to reduce energy consumption in computers, especially during 
long periods of user inactivity (such as overnight or during work hours for residen-
tial computers). The challenge not currently addressed by regulations or voluntary 
agreements is how to get more users to enable (or not disable) their computer sleep 
settings. As there are valid reasons why some users would need to prevent their 
computers from entering a low-power mode, either permanently or occasionally, it 
would be infeasible to remove the option of disabling sleep settings and make them 
involuntary. Instead, efforts to reduce energy in computers would be more fruitfully 
turned toward research into how users behave toward computer power management. 
Specific tasks include designing more effective and convincing user interfaces, and 
understanding and addressing the barriers that lead to users disabling or otherwise 
underutilizing computer power management options.

5.7  Pod Coffee Makers

The two pod coffee makers showed very similar standard profile energy usage esti-
mates (1076.9 and 1046.4 Wh), which are higher than any device other than the 4K 
television, and similar ranges (89% of the standard profile versus 92%). Both pod 
coffee makers showed a unique pattern in this set of devices, in that most of the 
range was lower-energy compared to the standard profile: the highest-use profile 
was only 7% above the standard profile for Model A and 3% above the standard 
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profile for Model B. In other words, most of the variation in usage predicted by the 
current model results in lower energy consumption than the standard profile.

The pod coffee makers are also unique among this set of devices in that the active 
aspect is not a significant factor explaining variation in energy use across profiles. 
Although the heating and brewing cycle during the active period is quite energy- 
intensive, it requires only 2 min to heat the water cache from cold state, and 1 min 
to dispense each cup. Instead, power management accounts for the majority of the 
energy consumption variation across profiles. Energy consumption is very similar 
across profiles using PM high-1 and high-2 (in which auto-off is enabled and set at 
2 h and the user turns the device off after use, respectively) but much higher for 
profiles using PM-mod, in which auto-off is disabled. There is no low level of power 
management, as the standard PM aspect—the factory default—is already as ineffi-
cient as possible.

The first solution to saving energy with pod coffee makers thus seems straight-
forward: change the factory default so that auto-off is enabled. This assumes that 
users are less likely to disable the setting if it is enabled by default than they are to 
enable the setting if it is disabled. This would not change the potential range of the 
device use profiles, but it would shift the standard profile down considerably, and 
make the higher-use profiles less likely to occur in actual households. Offering 
shorter delay periods—such is already done for the more advanced Model A 
device—would also save energy, and may be considered as a default setting. This 
could work well for households where only a few cups of coffee (or tea) are brewed 
within a short time frame every morning.

Unlike many other devices discussed (especially in the entertainment category) 
these devices are not intended to run for extended duration, as their utility comes 
from producing a product (a cup of coffee) quickly rather than providing screen 
time. Accordingly, leaving the device on for extended periods beyond producing 
coffee is wasteful. At the same time, users may become frustrated if the pod coffee 
maker takes what they perceive as “too long” to warm up from a standby state when 
they want a cup of coffee, especially as one expected benefit of pod coffee makers 
is their speed and convenience. One possible reason why users disable sleep settings 
is that they get annoyed at waiting for the device to resume from sleep mode. 
Speeding up the warm-up period and providing a user interface showing the prog-
ress of the device in warming up may help prevent this annoyance, allowing a 
shorter sleep delay time to be effective without reducing user satisfaction.

5.8  Rice Cooker

Although the rice cooker, like the pod coffee makers, also involves heating and 
keep-warm states, the results here show a drastically different pattern of effects. The 
standard profile for the rice cooker produces a fairly low energy consumption 
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estimate compared to other devices in this set (282.2 Wh), and although the range is 
somewhat smaller in absolute terms than that for the pod coffee makers, almost all 
the other profiles showed higher consumption than the standard profile. That is, the 
standard profile is almost as low as the lowest-use profile, and most of the other 
device use profiles result in higher energy consumption.

The rice cooker is unique among the devices tested here in that pattern of use 
explains a large and significant proportion of variance in energy consumption across 
device use profiles. The amount of active use—in this case, how much rice is cooked 
in total that day—has little effect in this analysis, but the number of times the rice 
cooker is used does. A closer look reveals that this is because the additional amount 
of energy used to cook, say, three cups of rice is incrementally small compared to 
the amount of energy used to cook one cup of rice. This comes down to timing: with 
the white rice used for testing here, it takes 32.5 min to cook one cup of rice, and 
only an additional 8 min to cook three cups of rice. However, changing the pattern 
and cooking that total of three cups of rice in two or three fresh batches over the 
course of the day (say, for lunch and dinner separately), requires a new baseline 
level of cooking time. In other words, with a pattern of use spread out over multiple 
periods per day, it takes more total time to provide the same amount of rice. This 
differentiates cooking appliances from experiential devices such as a television or 
computer, where the amount of time actively watched or used is synonymous with 
the amount of service received. As such, although the pattern aspect reveals the 
additional energy consumption, it is the consumption during active use that would 
need to be reduced in order to save energy. The rice cooker is similar to other cate-
gory devices not tested here that involve heating water and/or keeping food or liq-
uids warm, such as drip coffeemakers, under-sink or table-top water heaters, hot 
pots, and electric pressure cookers, and some conclusions can be cross applicable.

While power management is also significant, it is less impactful than the pattern 
of use over the course of the day. Other things being equal, profiles using low power 
management—where the user keeps the rice warm most of the day—use much more 
energy than others, whereas turning the rice cooker off as soon as it’s done saves 
only a small amount of energy compared to leaving it on for another hour (say, until 
the meal is over). The rice cooker is unique among devices tested here, in that users 
deliberately leave the device on in the keep-warm state. An online search reveals 
many people who prefer to make a large pot of rice and keep it warm all day, despite 
warnings about food safety. According to the current results, it uses more energy to 
make a new, smaller pot of rice three times a day (and turn off the warmer after 1 h) 
than to make one large pot and keep it warm all day. So if a user perceives these as 
the competing options, the “worse” power management strategy would actually use 
less energy.
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6  Overall

6.1  Range of Energy Consumption

The range of energy consumption across profiles for each device is shown to iden-
tify the highest and lowest energy usage that would be seen in real-life usage, given 
the assumptions in the profile definitions. The ranges are compared against the 
“standard” profile that represents or approximates the standard testing procedure. 
This indicates not only the percentage difference from the standard usage but also 
whether more of the range is above the standard or below it.

A device exhibiting a moderate range in energy consumption across profiles is 
not necessarily a bad sign, either for energy efficiency or for the accuracy of stan-
dard testing protocols. It is reasonable that devices would use more energy if actively 
used more hours, and that devices would save more energy if more aggressive power 
management features were used. Likewise, a very small range is not necessarily a 
good sign, as it indicates that the device does not effectively reduce energy use for 
shorter active periods or in response to power management.

Ideally, the range of device use behavior—and thus profile energy usage—would 
be normally distributed around the standard profile, in which case using standard 
testing methods would produce accurate and reliable estimates of the population. 
The current study cannot speak to whether this is the case, as it depends on how 
common the device use behaviors discussed here are in the population, which would 
require consumer behavior research that the field is sorely lacking.

The larger the range in possible energy consumption outcomes, the more likely 
it is that the real-life pattern of outcomes are skewed, which is especially concerning 
when results show energy consumption levels much higher than the standard pro-
file. For most of devices tested here (both televisions, video game console, desktop 
and laptop computers, and rice cooker), the upper range was much larger than the 
lower range, indicating that deviations resulting in higher use would be more 
extreme than deviations resulting in lower use. Only the two pod coffee makers 
exhibited more profiles with energy consumption below the standard profile than 
above, which is due to the power management settings being disabled by default for 
those devices.

6.1.1  Active Use

The duration or frequency of active usage is a significant factor influencing energy 
consumption for many of the evaluated devices. Indeed, were power management 
not being tested, the effects of active use would be more pronounced for most 
devices.

Even considering the weight of power management, active use explained 40–43% 
of variation in energy consumption for the 4K and HD televisions, and 20–27% of 
variation for the desktop, laptop, video game console, and streaming device. Of 
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these devices, the televisions, video game console, and desktop computer use a rela-
tively large amount of energy in their standard profile compared to others. It is 
especially troubling how much more energy is used by the newer 4K television than 
the HD television. These results thus add weight to efforts to reduce power draw 
during the active state for these devices.

It is important to distinguish between active use (when the user directly benefits 
from the device being active) and the active state itself, which may continue long 
after active use has ended, if power management fails (that is, automatic low-power 
settings are disabled and the user neglects to manually turn off the device). Thus, the 
high power draw of the active state contributes to the energy waste attributed to the 
power management aspect in these results. More aggressive improvements to energy 
efficiency during the active state would thus also save energy during user-idle time, 
when the devices are left on and unused either prior to or in the absence of auto-
matic transitions to a low-power state.

Reducing energy usage during operation typically requires comparable device 
utility: that is, to modify the device so that it uses less power without sacrificing 
functionality or features. For computers, this would be improving the way energy is 
used during idle periods. When not required, the device will self-regulate to pas-
sively save energy. After testing multiple generations of computers for this project, 
improvement in idle energy usage was easily observed. Promotion of alternate solu-
tions when possible helps. For example a substantial energy penalty is paid to 
stream online content on a video game console versus a dedicated streaming player.

6.1.2  Pattern of Use

The pattern of use for this investigation was defined as the number of times or peri-
ods the device was used, and the amount of time between those uses, given a spe-
cific amount of total active use. One way pattern of use can affect overall energy 
consumption is if the device requires an energy-intensive warm-up or boot-up 
period at the beginning of each use or if it has a long or otherwise wasteful cool- 
down period after each use. Some devices tested here, such as the video game con-
sole, do have a separate boot-up and/or shutting down process with a relatively high 
power draw. However, as these processes are quite short in duration, the resulting 
contribution to overall energy consumption by restarting the device multiple times 
during the day is not substantial.

Another significant issue for pattern of use is the idle time due to automatic sleep 
or auto-off settings with long delay times, which accumulates every time the device 
is used and left idle again. In this case, pattern of use can be seen as an example of 
a power management problem, in which the solutions are to reduce the amount of 
energy used when the device is on but idle and reduce the amount of time the device 
spends idle. Some devices exhibited a small effect of pattern due to long delay 
times, such as the streaming device. All other things being equal, pattern does mat-
ter in such situations. However, this effect was overwhelmed by variation in active 
use and in power management behaviors.
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The rice cooker provided a third way in which pattern of use matters for energy 
consumption: when the device requires a baseline amount of energy for a single use, 
with fairly small distinctions between a small versus large amount of product or 
service provided. Here, the effect of pattern can be interpreted as an effect of active 
use, in that the only solution would be to reduce the baseline energy consumption 
for the active cooking state. The lesson should also apply to other types of kitchen 
appliances that cook food or heat water. Although it would seem that pod coffee 
makers would suffer from this effect, the design has largely addressed the problem 
already: instead of heating the entire reservoir of water, the pod coffee makers only 
heat enough water for a single cup at a time, greatly reducing the impact of a long 
keep-warm period even when power management settings are disabled.

In sum, pattern of use can affect energy consumption of plug-load devices, but 
the effects for most plug-load devices are small compared to effects of power man-
agement and active use.

6.1.3  Power Management

The power management definitions used for the device use profiles combined two 
factors: settings that automatically transition the device into a sleep or soft-off state 
after a specified delay time of inactivity, and whether or not the user turns off the 
device immediately after using it. For every device, a moderate level of power man-
agement is defined with whatever automatic setting is the factory default (if any) 
along with the most likely user reaction at the end of use. Most devices have at least 
one low level, in which any power management setting is disabled and the user 
leaves the device on, and at least one high level, in which the user turns the device 
off after each use, negating any effect of automatic power management setting. 
Given this wide range of behaviors, it is not surprising that power management had 
a significant impact on energy consumption for all devices, and was the primary 
factor in variation across profiles for most devices. Still, while few would question 
the general idea that power management is important, this study helps show the 
importance of systematically examining when and how much specific power man-
agement behaviors (both settings and manual shut-downs) affect energy 
consumption.

The devices studied in the current project revealed three main failure points for 
power management: when automatic settings are disabled or otherwise ineffectively 
utilized, when low-power modes do not save much energy, and when devices remain 
in a fully functional active state during long periods of idle. A potentially missed 
opportunity for reducing energy consumption was also identified: automatic transi-
tions to a low-power state based on the status of connected devices was shown to be 
very effective in one device, and could be effective in others.

The most pressing problem is how to get more devices to automatically transition 
into sleep or other low-power modes. Unlike those of earlier generations, all of 
these devices offered at least one low-power mode and an automatic power manage-
ment setting for transitioning to it. However, if automatic sleep or auto-off settings 
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are disabled, they do not save any energy. Worse, they result in devices remaining 
on for long periods, even all day long, every day. CalPlug’s field study shows that 
many office desktop computers are left idle at all times, but little research is avail-
able to indicate how often users leave other devices on all the time. However, the 
effect of not using power management and leaving devices in the active state all day 
long is so large that even if only a small proportion of households do this, it would 
take a much larger proportion of households consistently enacting stringent power 
management behaviors to counteract all the wasted energy.

The simplest step to getting more devices into low-power states is to enable the 
energy-saving settings by default. To their credit, most devices already do this. The 
pod coffee makers are the one exception: for both models, the user would have to 
realize that the setting existed, realize that it was not enabled, and figure out how to 
enable it. For some devices, it may be possible to take away the users’ ability to dis-
able power management settings without reducing user satisfaction; this is already 
done with smart phones, and users have broadly accepted that limitation. However, 
this approach could be problematic for other devices where users are accustomed to 
having more control, especially for those where users may have valid reasons for 
leaving the device on and idle for long periods (for instance, computer users who 
cannot remotely access their work desktops if they are in sleep mode). More research 
into when and why users disable their sleep settings would be needed before the 
effects of enforcing settings could be estimated.

A more complicated issue is how to design the power management settings and 
the associated user interface to best encourage users to keep them enabled. Although 
little research has been done on this topic, anecdotal evidence—including countless 
tech forums answering users’ questions about why their devices are mysteriously 
turning off—indicates two problems. First, users are confused about sleep settings. 
Second, the most common response to being annoyed by even a few undesired sleep 
and shutoff events is to disable all automatic PM settings. Once settings are dis-
abled, users may forget they even exist. Most manuals and settings pages, including 
for the devices tested here, do little to explain the reasoning behind the settings, or 
encourage users to change the settings to a longer delay period rather than disable 
them, or to try to motivate users with energy-saving or “green” messages, which 
have worked in other applications. Furthermore, almost nothing is known about 
exactly what settings users would ideally want to use, what signals might work to 
help prevent unwanted shut-down events, or what their annoyance threshold is for 
how long they’re willing to wait for a device to restart from sleep. For instance, if a 
television gave users a certain signal that it was going to switch off in 5 min, so that 
users could easily forestall a false auto-off, it could be possible to set the default 
auto-off delay time to 1 h instead of 4 h without any decrease in user satisfaction. 
Much more research and development is needed to fully address these issues.

The second main failure point was illustrated in the current research by the set- 
top box, for which the stand-by mode uses almost as much energy as the fully func-
tional active state. As a result, the device showed almost no variation in energy 
consumption across device use profiles, even when the power management settings 
were enabled. The solution here is simple, at least in concept: reduce the energy 
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consumption of the supposedly low-energy state. The overarching goal is to get 
devices to spend more time in the low-power state, and the more that goal is met, the 
more important it is to incrementally reduce power draw in the sleep or standby state.

The third failure point identified here is when devices spend considerable time at 
full power during periods of inactivity when they could conceivably enter a lower- 
power idle state. Computers lead by example here, by shifting into “short idle” and 
then into “long idle” states in the absence of user input; these states pause certain 
processes to save energy, yet leave the device ready to quickly resume full activity 
when the user returns. While worthwhile efforts to further reduce energy in idle 
state for computers continue, efforts to do the same for other devices are warranted. 
For example, when the video game console is not running a game, it switches to a 
main menu state that uses almost as much energy, where it remains indefinitely 
unless it transitions to sleep or is turned off. Reducing the consumption of the main 
menu state would be a substantial improvement.

Finally, use of linked devices for guiding power management was an effective 
approach for the sound bar. Specifically, an input-specific power management 
option switches the sound bar off when the device sending audio input to the sound 
bar, such as a television, sends no input for 5 min. This feature could function simi-
larly in other connected devices that offered no such option, indicating a missed 
opportunity for savings. For example, any device that requires the television to dis-
play content could be set to transition to standby or soft-off if the television is turned 
off or transitions to sleep mode. A related alternate approach is to use a Tier-2 
Advanced Power Strip (Tier-2 APS) to turn off devices, as well as reduce the burden 
of standby loads from these devices.

In sum, the evaluation of the effects of power management and potential improve-
ments in its use and effectiveness, especially if combined with variation in active 
use and use patterns, is a rich area for continued investigation.

6.1.4  Evaluation Method Limitations

The current analysis shows the promise of the device use profile approach for 
assessing potential energy consumption across various users. However, the approach 
is inherently limited by the quality and reliability of the information used to define 
the model’s parameters. In the current format, each aspect—active use, pattern of 
use, and power management—was defined with at least three levels of behavior: 
low, moderate, and high. Unfortunately, solid data on how devices are used in the 
field is sorely lacking. As such, most of the definitions used here were constructed 
by the research team based on assumptions and anecdotal observations, and for 
power management, by the options offered by the device. Self-reports of the amount 
of active use per day are available for a few of the devices here, but even for those, 
many survey questions use categories (e.g., a range of hours of TV use) rather than 
point estimates. No reliable data could be found on how people actually use power 
management in other devices, or on patterns of usage over the day. For this reason, 
no attempt was made to further differentiate weekday versus weekend use or to 
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extrapolate to estimated annual energy consumption, which would require addi-
tional levels of assumptions that could not be warranted.

In short, as with any research of this sort, the results of the device use profile 
analysis are only as good as the assumptions that underlie its measures. Even assum-
ing that the definitions are accepted as representing some users, the lack of data 
means no conclusions can be drawn about how many users fit each profile. The find-
ings provide useful boundary conditions and a range of energy consumption results 
based on reasonable behaviors. If most of those behaviors produce much higher 
energy consumption estimates than the standard or “moderate” device use profile, 
this reduces the chance that natural variation in device use will average to the stan-
dard testing’s mean and increases the chance that users with higher energy use pro-
files will outweigh those with lower-use profiles. This illustrates the importance of 
conducting more research on how devices are actually used in real-life situations, if 
accurate estimates of annual energy consumption for device types are desired.

The findings demonstrate the utility and potential of the PLSim tool that was 
developed and described here. In the present version, each parameter was input into 
a template usage file. This file was used to create a usage schedule in PLSim. This 
manual process serves as an effective demonstration, but can be tedious in usage 
and warrants additional development to add automation.
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