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Abstract— A key element to realizing the smart energy grid of
the future is the deployment of an efficient and reliable infor-
mation network. An intelligent combination of wired networks
(the Internet), wireless networks and power line communication
networks can be used to deliver control and application messages
generated by the smart grid. Integration of these three network
types is non-trivial due to the distinct differences in deliverable
quality of service and financial cost. Traffic assignment across
these distinct networks poses a novel research problem which
must be solved to realize the smart grid. Herein, an algorithm
which dynamically allocates traffic with different Quality of
Service requirements in terms of throughput, delay and failure
probability to information networks with different performance
characteristics is proposed. A detailed queueing model for the
system is defined which accounts for input queues buffering
smart grid packets and external applications injecting traffic
into the buffers of the networks. A Lyapunov optimization
based- algorithm selects the packet allocation strategy based on
input/output queue states and guarantees the required QoS to
the input queues while minimizing financial cost.

I. INTRODUCTION

The current energy grid is predicted to be unable to handle

the demands of a future energy delivery system. An intense

research and design effort is under way to define the future

energy grid, which is generally referred to as the smart

grid [1]–[3].

The traditional energy grid is a tree-like hierarchically-

controlled structure which delivers energy to consumers. A

smart energy grid presumes an entirely different model. The

introduction of renewable energy sources and distributed pro-

duction models, the deployment of an energy market, and the

implementation of demand response all require the grid to

convey both energy and information. The increased complexity

of the production and consumption model necessitates for the

design of a distributed control structure operating at different

scales where the different control entities can fully coordinate.

Thus, the control of the grid requires the timely and reliable

exchange of critical information among the control entities. In

the energy market, an information network is needed to trade

energy. The effective implementation of demand response

requires individual households and commercial buildings to

receive periodic energy pricing information.

The traffic generated to control the grid and to sustain the

activity of the many connected applications is heterogeneous

in terms of Quality of Service requirements (maximum delay,

minimum throughput, reliability, etc.). For instance, control

packets are likely small packets with stringent delay and

reliability constraints, whereas large best effort packets may

be routed through the network to collect energy production

and consumption statistics.

The heterogeneous traffic generated by the smart grid can

be routed through existing information networks, e.g., internet

and wireless cellular networks, or delivered through dedicated

networks, e.g., power line communication (PLC) networks.

The various available information networks provide different

performances in terms of bit rate, delay and packet delivery

rate. Moreover, routing packets through existing commercial

networks might be associated with a financial cost for the

utility, whereas a dedicated and utility-owned information net-

work, once deployed, routes packets without additional charge.

Thus, the assignment of the heterogeneous traffic generated

by the smart grid to the information networks (referred to as

output networks in the following) is a critical design choice.

In this paper, we propose a scheduling algorithm which

dynamically allocates smart grid packets to different output

networks. A detailed queueing model is constructed, where

smart grid traffic with different QoS requirements is buffered

in different input queues and then assigned to the buffers of

the output networks. Additional traffic is injected into the

buffers of the output networks to model those scenarios in

which some networks are shared with other applications (e.g.,

internet shared with web traffic). The allocation decision is

based on the state of the input and output queues, as well as

on the state of the links connecting the input queues to the

output networks.

The scheduling algorithm is based on Lyapunov optimiza-

tion theory [4] and ensures queue stability and the required

QoS while minimizing an objective function (e.g., the financial

cost), as long as a feasible allocation policy exists. Dynamic

packet allocation offers an improved reliability with respect to

static allocation, which would result into undesirable services

breakdowns in case of network failure or congestion. For

instance, a dynamic allocation could avoid an internet-based

energy market to breakdown in case of local internet network

failures or congestion by re-routing the traffic through other

networks (e.g., PLC networks or wireless cellular networks).

Moreover, networks are subject to variations over time of the

provided quality of service and might be temporarily unable to

support traffic with critical QoS requirements (e.g., production

control packets over internet).

Packet transmission and forwarding in heterogeneous net-

works have been studied in prior literature [5]–[11]. Policy

based routing (e.g., [12], [13]) was proposed to improve

Communication Networks for Smart Grid (IEEE SmartGridComm)

978-1-4577-1702-4/11/$26.00 ©2011 IEEE 132



QoS of communication networks. However, the smart grid

scenario considered herein differs from those investigated in

prior literature. The perspective we take is that of allocating

packets to networks with distinct characteristics in order to

meet heterogeneous QoS constraints, rather than optimizing

the operations of the networks. The networks then deliver the

allocated packets according to their standard protocols.

The rest of the paper is organized as follows. In Section II

discusses the smart grid scenario and the main challenges in

terms of information delivery among the entities of the grid.

Section III describes the queueing model considered herein.

The optimization algorithm is presented in Section IV. Sec-

tion V provides illustrative numerical results and Section VI

concludes the paper.

II. SMART GRID AND INFORMATION NETWORKS

The smart grid differs from the traditional energy grid

in many aspects. We list in the following some of the key

elements and issues of the smart grid.

• Distributed production: the diffusion of renewable en-

ergy may shift the energy production model from a sce-

nario with a relatively small number of large production

sites to a large number of small production sites spread

over the territory [14]. For instance, individual house-

holds or commercial buildings may install photovoltaic

panels and geothermic systems and inject in the energy

grid the excess of produced energy.

• Stochastic production: conversely to fossil fuel-based

energy production, which can be controlled by the utility,

renewable energy production of most renewable sources

is stochastic [15], [16]. For instance, the amount of

energy produced by photovoltaic panels and eolic turbines

depends on metereological variables (sun irradiation and

wind speed).

• Energy market: whereas in the traditional energy grid

there is a rigid individual seller to individual consumer

market model, the distributed production model may

generate an energy market in which individual producer-

consumer entities trade energy on the grid. In this sce-

nario, individual producer-consumers/producers control

the amount of produced, consumed and traded energy

based on utility grid and market information [17], [18]

• Load stress: stochastic and distributed production and

price-based consumption correlate in space the avail-

ability of energy and make the grid more sensible to

local overload. Coordination among local controllers is

crucial to avoid local grid failures. In addition to that, the

technological shift to electric vehicles is going to generate

a considerable, and time-space correlated, load stress to

the grid due to battery charging. Coordination among

charging stations and timely load information might be

critical to avoid breakdown of the utility grid [19], [20].

The control and management of the smart grid is con-

siderably more challenging than in traditional utility grids.

Stochastic and diffused production, price-based local con-

sumption and production make control much harder than in

a simple energy demand-and-delivery system. In this scenario

a centralized control rationale is likely ineffective. One of the

leitmotifs of smart grid is, in fact, to push intelligence to the

edges of the grid, which means a distributed local control

structure operating at different scales of the system. However,

distributed control requires a certain degrees of coordination,

and thus information exchange, among the control entities.

The scenario sketched above, besides the deployment of

a physical energy network, requires the physical or logical

construction of an information network to provide information

to the control entities, as well as to support other smart grid

applications. The entities of the energy grid are sources of

traffic with potentially different characterization (e.g., size

of the packets) and Quality of Service (QoS) requirements

(e.g., delay, reliability, rate). For instance, distributed control

may require the exchange of short packets with critical delay

and reliability constraints (e.g., packets triggering an injection

of energy into the grid to face an unexpected increase of

demand), and larger packets with relaxed delay and reliability

constraints (e.g., cyclic exchange of production/consumption

statistics). Production sites may need to broadcast produc-

tion information, whereas battery charging station may send

load information. The energy market may generate delay

and reliability critical packets for financial transactions and

larger packets conveying pricing information. Additionally,

individual households may deploy local networks to control

energy consumption and production.

It is clear from the previous discussion that in order to

achieve a mature smart grid technology, the information grid

needs to support a wide range of services generating a het-

erogeneous traffic with a wide range of QoS requirements.

However, the information grid might not be a physical network

dedicated to the control/management of energy grid, but rather

a logical network collecting existing networks and dedicated

networks. Fractions of the huge smart grid traffic volume can

be routed through internet (locally connected by wireless Local

Area Networks), wireless cellular networks and Power Line

Communications (PLC) networks. Clearly, each individual

network has different characteristics. For instance, internet

potentially has a much larger rate than PLC networks, but is

shared with web traffic and subject to congestion, delay and

packet dropping, whereas small rate PLC connections may

be deployed on the energy grid itself and be dedicated to

the management of the grid. Wireless networks are subject to

fading and interference, and, again, mainly dedicated to other

applications. The deployment of a dedicated network handling

the whole energy-related traffic is financially challenging and

unlikely, so that the part of the traffic is likely routed through

existing networks, which are shared with other applications.

The various services and different kind of traffics generated

by the smart grid need, then, to be allocated to the different

available networks, taking into account the requirements in

terms of QoS of the packets and the characteristics of the

networks.

III. SYSTEM MODEL

In this section, we describe the system model considered in

this paper. The system is divided into input queues, comprised
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Fig. 1. System model as described in Section III.

of buffers associated with a different QoS requirement and

characterization, and output networks, representing the various

options for the delivery of the packets. The two sets are

connected by links associated with a, potentially time varying

channel in order to model variations in fading and capacity.

A. Queueing Model

Consider the system depicted in Fig. 1 with Nq input queues

and No output networks. Slotted time operations are assumed,

where the duration of a time slot is equal to τs. The size of the

packets in the network are expressed in units corresponding

to buffer slots.

The random variable Ai(t)∈Ai⊆N
+

0 , i=1, . . . , Nq , is equal

to the number of packets injected in the input queue i in the

time slot t∈N
+

0 , where N
+

0 =N
+∪0. Packets entering the input

queue i have fixed size equal to ℓq
i units. Qi(t) is the number

of buffer slots of the input queue i which store packets at time

tτ+, i=1, . . . , Nq .

The output network j characterized by a fixed average

delivery delay δjs which represents the end-to-end delay of

packets routed through the network to their destination. The

interface to the output network j is composed of a queue

(network queue) which buffers all the packets to be transmitted

and a random variable Ej(t) which represents exogenous

packets of size ℓo
j entering the network queue at time t. The

number of buffer slots storing packets in the queue of the

output network j at time tτ+ is Oj(t).
At the beginning of each time slot t Uij(t), with

i=1, . . . , Nq and j=1, . . . , No, units are removed from the

input queue i and sent to the output network j, where

0≤Uij(t)≤min[Cij(t), Qi(t)] and Cij(t) is the maximum

number of buffer units per slot supported by the channel

between input queue i and output network j. We assume

that Cij(t) is finite for any t. Fractions of packets cannot be

transferred from a buffer to another, and thus Uij(t)=nℓq
i ,

n=0, 1, . . ..
Once transferred to the buffer of the output network, the

output network is in charge of forwarding the packet to its

final destination. The framework proposed herein controls

packet transfers from the input queues to the output networks,

whereas packet forwarding through the network is performed

according to standardized protocols which are associated with

network specific delay, rate and failure probability.

Packets in the network queue j are served at rate µj

units/slot. Packet failure and retransmission are incorporated

in the model. In particular, packets originating from the input

network i are retransmitted at most Fij times by the output

network j and that packet failure occurs with probability ρij .

similarly, exogenous packets entering the output network j are

retransmitted at most Fj times and fails with probability ρj .

The random sequences Pj(t), t∈N
+

0 track packet failures. The

delivery delay associated with the output queue j is denoted

by Dj . Note that in real systems, µj , ρij and Dj may be

time varying and need to be estimated by the controller. These

aspects of the system are left for future developments of the

framework.

The system described above captures the important features

of the scenario of interest. Input queues model the arrival

and buffering of the packets associated with the various

services generated by the smart grid, with service-specific

traffic volume and packet size. The exogenous stochastic traffic

injected in the output networks account for the possibility

that the network is shared with other local applications and

may be temporarily congested. Different service rates, failure

probabilities and retransmission protocols account characterize

the performance of the output network. As will be detailed

later, the system also allows the definition of individual

input queue performance metrics to be used as objective and

constraint function in the optimization problem.

B. System Dynamics

We define in the following the stochastic evolution of the

variables describing the state of the system. For the sake of

simplicity, it is assumed in the following that arrivals variables

Ai(t) and Ej(t), with i=1, . . . , Nq and j=1, . . . , No, are i.i.d.

random variables. The inclusion in the model of correlated

arrivals is left for future research.

The update rule for the number of units of traffic in the

input queue i is

Qi(t + 1) = Qi(t) + ℓq
i Ai(t) −

No∑

j=1

Uij(t). (1)

Note that each packet arrival occupies ℓq
i buffer units.

The update rule for the number of units of traffic in the

queue in the output network j is

Oj(t+1) = Oj(t)+Rjℓ
o
j Ej(t)+Rij

Nq∑

i=1

ℓq
i Uij(t)−µj , (2)

where Rj and Rij are multiplication factors accounting for

retransmissions. In particular, when a packet is transferred

from the input queue i to the output network j, Rij replicas

are created. For the sake of simplicity, we assume that the

number of replicas is fixed and equal to the minimum integer

larger than or equal to the average number of retransmissions,

that is ⌈Rij⌉ where

Rij = 1 +

Fij∑

f=1

ρij
f . (3)
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More sophisticated models accounting for variable per packet

retransmissions can be included in the framework without

significant modifications to the discussion and results. Rj

is defined analogously for the exogenous traffic entering the

output network j.

The variables Uij(t) are controlled by the system and are

determined according to a randomized policy which maps the

state of the system (queues and links) to packet transfers to

the output queues.

C. Performance Metrics

Input queues correspond to smart grid services with different

QoS requirements. In particular, individual service throughput,

packet overall delay and packet failure probability are consid-

ered as performance metrics.

The throughput associated with the input queue i expressed

in buffer units per time slot is the time average

lim
T→∞

sup
1

T

T−1∑

t=0

No∑

j=1

E [Uij(t)]Φij , (4)

where Φij=1−ρ
Fij

ij is the overall success probability provided

by the output network j to packets transferred from the input

queue i and E [·] denotes expectation. Thus, the throughput is

the average number of units of traffic transferred to the output

networks and then successfully delivered.

The overall average delay of a packet arrived in the input

queue i has three components: the waiting time in the buffer

of the input queue i, the average waiting time in the buffer

and the average delivery delay of the output network. Note

that the three components are all functions of the transfer

policy from the input queue to the output networks. In fact, the

transfer policy determines the average rate at which packets

are removed from the input queue, and thus the average

permanence of time of the packets, but also the fraction of

packets assigned to the various output networks given their

buffer status. By Little’s law, the average waiting time in the

input queue i expressed in slots is

lim
T→∞

sup
1

λin
i T

T−1∑

t=0

E [Qi(t)]. (5)

where λin
i is the average arrival rate in units per slot

limT→∞ 1/T
∑T−1

t=0
sup ℓq

i Ai(t).

Given that a packet is assigned to the output network j,

and that the units of traffic in the output buffer are Oj(t) the

time (in slots) spent by the packet before being served by the

output queue is Oj(t)µj . Therefore, the average time spent

by a packet transferred from the input queue i to the output

network j is

lim
T→∞

sup
1

T

T−1∑

t=0

No∑

j=1

1

λin
i µj

E [Uij(t)Oj(t)]. (6)

The average time spent by the packet in the buffer of the vari-

ous output networks is weighted by the assignment probability.

Similarly, the delivery delay of a packet needs to be aver-

aged over the output networks as follows

lim
T→∞

sup
1

T

T−1∑

t=0

No∑

j=1

1

λin
i

E [Uij ]RijDj . (7)

The probability that a packet is successfully delivered to its

final destination is simply

lim
T→∞

sup
1

λin
i T

T−1∑

t=0

No∑

j=1

E [Uij(t)]Φij . (8)

An average financial cost can be associated to the allocation

strategy if we define Lj as the cost per unit of traffic transfered.

We then define

lim
T→∞

sup
1

λin
i T

T−1∑

t=0

Nq∑

i=1

No∑

j=1

E [Uij(t)]Lj . (9)

IV. SCHEDULING VIA LYAPUNOV OPTIMIZATION

The performance metrics defined in the previous section

are all functions of the allocation policy, which determines

the amount of packets transferred from the input queues

to the output networks in every time slot. We address the

general problem of minimizing/maximizing one of the average

performance metrics given inequality constraints on a set of

others average performance metrics with guarantees on the

mean rate stability of the queues in the system. Define the

cost functions yk(t), k=0, . . . , Nc. The optimization problem,

then, is formulated as

Minimize : lim
T→∞

sup
1

T

T−1∑

t=0

E [y0(t)], (10)

s.t. : lim
T→∞

sup
1

T

T−1∑

t=0

E [yk(t)]≤yk, k=1, ..., Nc,

lim
T→∞

sup
1

T
E [Qi(t)]=0, i=1, ..., Nq,

lim
T→∞

sup
1

T
E [Oj(t)]=0, j=1, ..., No,

Uij(t)≤Cij(t), ∀i, j. (11)

The equality constraints describe the limiting behavior of

the packet arrival and departure rates from the queues. The

inequality constraints force the policy to meet QoS require-

ments in terms of throughput, delay and delivery probability

according to the metrics defined in the previous section. For

instance, the cost function yk(t)=Θi−Uij(t)Φij with yk=0
forces the throughput of the input queue i to be larger that

Θ
min

i . Specific examples will be discussed in Sec. V.

We use the Lyapunov drift optimization framework pro-

posed in [4] to optimize the allocation strategy. The optimiza-

tion algorithm realizes a tradeoff between the average number

of packets in the stabilized queues and the time average of the

objective function. Note that the allocation policy is shown to

be optimal [4] A set of virtual queues Zk(t) is defined. The

update rule for the virtual queues is

Zk(t + 1) = max(0, Zk(t) + yk(t) − yk). (12)
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Fig. 2. Assignment rates as a function of the arrival rate in the output queue
1 from an external application (λo

1
).

Thus, virtual queues accumulate cost instead of packets.

Define the vector Θ(t)={Qi(t), Oj(t), Zk(t)}∀i,j,k and the

Lyapunov function

L(Θ(t))=
1

2

Nq∑

i=1

Qi(t)
2 +

1

2

No∑

i=1

Oi(t)
2 +

1

2

Nc∑

i=1

Zi(t)
2, (13)

and the Lyapunov drift

∆(Θ(t)) = L(Θ(t + 1)) − L(Θ(t)). (14)

The allocation algorithm greedily selects the transfer variables

Ui,j(t)≤min[Cij(t), Qi(t)], ∀i, j, which minimize the drift-

plus-penalty

∆(Θ(t)) + V E [y0(t)|Θ(t)], (15)

where V is a positive weight that realizes a tradeoff between

the average queue (including virtual queues) size and the

objective function. This strategy is proved to stabilize the

queues while keeping the objective function within a bounded

distance from the optimum. The larger V , the closer the time

average of the objective function is to the optimum and the

larger the average size of the real and virtual queues. As shown

in [4], mean rate stability of the virtual queues guarantees the

policy to meet the inequality constraints.

V. NUMERICAL RESULTS

In this section, numerical results are provided to illustrate

how the algorithm allocates packets from the input queues

to the output networks depending on the characteristics of the

output networks and the QoS requirements of the input traffic.

We consider a scenario with two input queues where the first

and second input queue buffer large packets with relaxed delay

constraints and small packets with stringent delay constraints,

respectively. The output networks are:

• output queue 1: shared wired internet network with

large output rate and small delivery delay. Concurrent

applications inject a large amount of traffic in the output

buffer. Packets sent to this output network incur a small

financial cost.

• output queue 2: shared wireless networks with relatively

large output rate and small delivery delay. Concurrent

applications inject a large amount of traffic in the output

buffer. Packets sent to this output network incur a high

financial cost.
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Fig. 3. Financial cost as a function of the arrival rate in the output queue 1

from an external application (λo
1

).

• output queue 3: dedicated PLC network with a small

output rate and a large delivery delay. No concurrent

applications and the packets sent to this output network

incur no financial cost.

Packet arrivals in the input queue i=1, 2 are assumed Pois-

son with rate λin
i pkt/slot. Arrivals in the output buffer j,

j=1, 2, 3 from external applications are Poisson with parame-

ter λo
j pkt/slot. The objective of the algorithm is to minimize

the overall financial cost while keeping the queues stable and

meet constraints on the throughput and output buffer plus

delivery delay.

Fig. 2 depicts the assignment rates, that is, the fraction of

packets transferred from an input queue to the various output

networks, as a function of λo
1 (in the figure, the assignment

rates from the input queue 2 to the output network). Fig. 3

and 4 depict the financial cost and the delay as a function of

the same parameter.

If λo
1 is small compared to the output rate of the output

network 1, then the output buffer is almost empty of exogenous

packets from other applications. Thus, the optimal strategy is

to send all the packets from the input queue 1, which can be

delivered with a relatively high delay, to the PLC network,

which is the network with the largest delay, but the smallest

financial cost. Delay critical packets are sent to the wired

internet network, which, if the corresponding output buffer is

empty, provides low latency in the output buffer and delivery

delay, as well as a small financial cost.

As λo
1 increases, the output buffer of the output network

1 fills with packets from the exogenous applications. As a

consequence, the latency of the packets assigned to that output

network increases. Moreover, the constraint on the stability of

the output queue forces the algorithm to assign lesser packets

to that output network as λo
1 is increased. Thus, packets from

the input queue 2 are redirected to the output network 2, which

is more expensive, but provides lower latency and remains

stable even with a larger amount of injected packets. The

output buffer latency plus delivery delay of packets from the

input queue 2 increases. In fact, those packets routed through

the output network 1 incur a larger buffer latency, while those

assigned to the output queue 1 incur an overall delay larger

than those assigned to the output network 1 if λo
1 is small.

It is possible to observe that the algorithm reacts to the

increasing congestion of the output network 1, which was ini-
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TABLE I

SYSTEM PARAMETERS.

Arrival rates (input queues) λin
1

=λin
2

=0.5 pkt/slot

Arrival rates (exogenous appl.) λo
2
=1.5, λo

3
=0 pkt/slot

Packet size ℓ
q

1
=2, ℓ

q

2
=1, ℓo

1
=ℓo

2
=ℓo

3
=1 units

Failure probabilities ρ:,:=0.05

Output rates µ1=3.5, µ2=2.5, µ3=1.5units/slot

Financial cost L1=2, L2=4, L3=0dollar/unit

Maximum delay in. queue 1 20 slots

Maximum delay in. queue 2 10 slots

Minimum thr. in. queue 1 0.5 units/slot

Maximum thr in. queue 2 0.4 units/slot

tially in charge of the delivery of all the delay critical packets.

A static allocation would have incurred a large delay for these

packets due to large number of packets in the output queue

1. Note that for large λo
1 the exogenous applications injecting

traffic over internet would have incurred poor performance as

well if a large fraction of packets were allocated from the input

queues of the smart grid.

Fig. 3 and 4 also depict the financial cost and delay in

a scenario in which the PLC network is not available, that

is, no packets can be transferred to that output network. As

λo
1 increases, the algorithm is forced to allocate an increasing

fraction of the packets to the wireless network (output queue

2), which incur a high financial cost. Moreover, the latency

in the buffer of the wireless network becomes larger as more

packets are injected from the input queues and the associated

buffer becomes more and more congested. Note that the delay

requirement of the packets from the input queue 2 is not met

for high λo
1. The availability of more options, and especially

of dedicated networks, appears to be critical to guarantee QoS

to the heterogeneous traffic generated by the smart grid.

VI. CONCLUSIONS

An algorithm for the management of smart grid traffic with

heterogeneous Quality of Service requirements was proposed.

The algorithm, based on Lyapunov optimization theory, al-

located packets to the various output networks based on the

current state of the input and output buffers. The algorithm was

shown to effectively assign packets to the output networks as

a function of the performance profile of the output networks

and the QoS requirements of the smart grid packets.
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