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Abstract— The SmartGrid (SG) is a complex system connect-
ing physical components (e.g., human, weather, power plants)
and logical components (e.g., control algorithms, communication
infrastructure, protocols). The large number of components and
the interactions between the individual components induce an
extremely intricate behavior of the overall system. Detecting
anomalies in the behavior of the system requires a large number
of observations and is unpractical. A novel learning and esti-
mation framework to analyze stochastic processes over graphs
associated with SG systems is proposed. The critical observation
behind the proposed framework in that these systems induce an
underlying sparse structure which enables dimension reduction
via compressed sensing-like schemes. Numerical results show that
the compression approach proposed herein reduces by orders of
magnitude the number of observations required to detect an
anomalous behavior of the SG.

I. INTRODUCTION

The need for a shift in the energy production and consump-

tion model dictated by environmental and social challenges

is generating an intense research effort to define the energy

grid of the future, i.e., the SmartGrid (SG) [1]. Intelligent

buildings and load control [2], energy markets [2], and dis-

tributed and renewable-based energy production [3] make the

behavior of the SmartGrid extremely dynamic and complex.

It is envisioned that a large sensor network will be deployed

to provide measurements and data at a fine time scale to

monitoring and control stations distributed over the grid. Thus,

the SG is a large system interconnecting millions of intelligent

entities producing, selling, consuming energy, sensing the

grid and actively making decisions. Ensuring robustness and

reliability of this complex and heterogeneous system is a major

technological challenge.

Prompt detection of anomalies is critical to enable effec-

tive countermeasures and avoid grid failures. Prior work on

anomaly detection focused on detecting failures in the physical

structure of the grid (e.g., [4]) or on particular aspects of the

overall SG system (e.g., cyber attacks [5]). In this paper, we

seek the identification of anomalies in the stochastic behavior

of the overall SG system. We propose a broader definition of

anomaly as malfunctions of physical entities of the grid (lines,

production sites, etc.), but also as unexpected or unforeseen

behavior of production and consumption potentially leading to

failure. Traditional analysis and estimation algorithms cannot

deal with the enormous complexity of the SG system, and
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would fail to provide timely identification especially given the

complex behavior of the system [6].

We consider a local sector of the grid where energy pro-

duction sites (traditional fossil fuel plants and renewable-

energy farms) are interconnected to smart loads (residential

and commercial buildings) by transmission and distribution

lines. Fossil fuel power plants have a production profile that

is planned a day ahead by the utility. The energy produced

by renewable energy production sites (either owned by the

utility or individual households) is a function of local weather

factors, such as wind strength and solar illumination. Smart

loads are intelligent buildings whose energy consumption is

controlled by automated systems that determine the activation

of appliances and electric devices in the building based on

consumer choices and habits, weather conditions and energy

prices. Smart meters installed in the buildings and sensors

provide measurements and data to monitor and control sta-

tions. Data are used to build a stochastic model of the system

and determine pricing and production strategies, as well as to

track the current state of the grid. A cost function is defined

to penalize potentially unstable and dangerous states of the

grid. The stochastic model based on prediction is used to

compute the discounted value function associated with the cost

function [6]. The value function captures the long-term average

cost, which is associated with the probability that the system

will hit high cost states.

We propose a novel anomaly detection technique for Smart-

Grids based on sparse approximation theory and wavelets

tailored to our scenario. Our baseline observation is that the

graphical structure of the stochastic process associated with

the behavior of technology-driven and artificial systems is

compressible, meaning that it admits a concise representation

in a proper domain. A concise representation allows the

construction of compressed sensing-like algorithms detecting

the behavior of the SG and estimating the value function from

a small number of observations. We underscore that prior

work proposed the use of compressed sensing paradigms to

retrieve the structure or properties of the physical graph of

networks, that is, the graph composed by the terminals and the

physical connections between them (e.g., [7]). In contrast, our

work centers on the analysis, and compression, of the logical

graph of the SG, where vertices are logical state of the system

and edges are state transitions. In the proposed framework,

Sparse Group Least Angle Selection and Shrinkage Operator

(LASSO) [8] is used to select the model for the behavior

of the system based on the observation of a trajectory of

the system. This first step enables the detection of anomalies
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Γ(l′|c,w′, p′) = P(L(t+1)=l′|C(t)=c,W(t+1)=w′, P (t+1))=p′) (1)

at the structural level of the stochastic process determining

the trajectory of the system. Then, for the selected model,

LASSO is employed to estimated the value function and detect

anomalies in the expected long-term behavior of the system.

The rest of the paper is organized as follows. Section II

describes the stochastic model and the estimation problem. The

learning and detection algorithm is presented in Section III.

Section IV presents numerical results.

II. STOCHASTIC MODEL AND ESTIMATION PROBLEM

We define a time indexing t=1, 2, 3, . . ., and the time

interval [tℓ, (t + 1)ℓ] corresponds to “time t”. The probability

of an event is denoted by P(·). A collection of variables

W(t)={Wi(t)}i=1,...,Nw
∈W describes the weather condi-

tions at time t. The variable Wi(t) can be associated, e.g., with

wind strength or solar illumination in a geographic area of the

grid. We capture time variations in the behavior of the con-

sumer by defining the variable C(t) = {Ci(t)}i=1,...,Nc
∈C.

C(t) is a collection of logical states associated with the in-

dividual consumer (or aggregates of consumers). Each logical

state Ci(t) expresses factors influencing the energy consump-

tion of a building/load (e.g., presence of the consumer at

home, electric vehicle under charge, etc.). Analogously, we

define the collection of variables F(t)={Fi(t)}i=1,...,Nf
∈F

and R(t)={Ri(t)}i=1,...,Nr
∈R associated with the level of

energy production of fossil fuel power plants and renewable-

based farms. The variable P (t)∈P defines the price of energy

at time t.

In order to capture correlation and burstiness in the weather

conditions and consumer behavior we model the sequences

[W(t)]t=1,... and [C(t)]t=1,... as Markov chains. Note that

variables tracking time and slowly varying states of metere-

ological conditions or consumer behavior can be included

in the model to improve its accuracy. The transition prob-

abilities of the chain modeling the weather are denoted by

pw(w′|w)=P(W(t+1)=w′|W(t)=w). Similarly, the logical

state of each smart load evolves according to the transition

probabilities pc(c
′|c)=P(C(t+1)=c′|C(t)=c).

The energy consumption is influenced by weather con-

ditions (e.g., heating and cooling), logical state of the

user and energy price. To capture this dependence, we

define the statistics of the sequence [L(t)]t=1,... as in

Eq. (1). The production of renewable energy is func-

tion of the weather conditions. In particular, we define

Φ(r|w)=P(R(t)=r|W(t) = w). The fossil fuel-based en-

ergy production and energy price are functions of the state

of the system. We define Ψ(f |s)=P(F(t))=f |S(t))=s) and

Ω(p|s)=P(P (t)=p|S(t)=s). The overall state of the system is

S(t)=(C(t),R(t),F(t),W(t),L(t), P (t))∈S. The transition

probabilities p(s′, s)=P(S(t+1)=s′,S(t)=s) are estimated

based on weather forecast, technical specifics and past data

sent by the smart meters and automated management systems.

The cost function ρ(s), ∀s∈S, expresses the healthiness of

the system in state s. For instance, imbalanced production and

load is undesirable and is assigned a high cost. The expected

discounted long-term cost (value function) [6] from state S(t)
is given by

V (S(t)) = E
[

∞
∑

τ=t

γτ−tρ(S(τ))
]

, ∀S(t)∈S, (2)

where γ∈(0, 1) is the discount factor and E [·] denotes expec-

tation]. V is independent of t, and we can fix t=0. The value

function is intimately connected with the transition probability

matrix of the Markov chain. We have

V (s) = ρ(s)+

∞
∑

τ=1

∑

s′∈S

γτp(s, s′)τρ(S(τ)). (3)

The function V is the fixed point solution of the system of

equations

V (s) = ρ(s) +
∑

s′∈S

γ p(s, s′)V (s′), ∀s∈S. (4)

The functions Γ, Ψ and Ω influence the transition probability

of the system, and thus, the value function. These functions are

designed to ensure that the probability that states associated

with the normal functioning of the grid high cost states are

reached is small (i.e., small values of the value function in the

former class of states).

The value function V is computed based on the estimated

statistics and functions defining the behavior of the system and

is periodically recomputed. In order to detect anomalies in the

operations of the SmartGrid, the control stations observe the

state of the grid and estimate the value function Ṽ associated

with the current operations of the grid. Significant differ-

ences between the predicted and the actual value functions

correspond to differences between the predicted and the real

functioning of the grid, which may result in instability and

failure. In particular, a larger value of the value function

associated with states in which the grid normally operates

means that the stochastic process will hit the future high cost

states with a larger probability than that predicted. However,

due to the large size of the state space of the system, an

accurate estimation of the value function requires an extremely

large number of observations. More importantly, traditional

estimation techniques (e.g., Reinforcement Learning, etc.) re-

quires the process to hit all the states multiple times, including

those potentially leading to unstable behavior.

III. ESTIMATION AND DETECTION ALGORITHM

Our critical observation is that sparsity may also character-

ize the temporal-evolution of technology-driven systems, such

as the SG and functions of the statistics of the stochastic

process modeling the behavior of the system find a concise

representation if projected onto a proper basis. The Markov

chain modeling the evolution of the logical state of the SG is

represented as a graph, where vertices are the states in S and

edges are state transitions with non-zero probability. The graph

has a regular structure, which can be exploited to compress

functions defined on the graph. By regular, we mean that the

connectivity structure of a vertex is likely be similar to that of
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many others. As a consequence, the connectivity structure of

the overall graph, and the distribution of the future state from

each state, can be represented using a number of functions

much smaller than the size of the state space. For instance, an

increase of the solar irradiation will result in an increase of

the energy generated by photovoltaic panels from all the states.

Moreover, it is reasonable to assume that there exists classes

of consumers with a similar behavior where the number of

classes is much smaller than the number of total consumers.

Analogously, renewable-based production sites may have a

similar reaction to weather changes. In [9], we proved that

compressed sensing-like algorithm can be effectively applied

for the estimation of value functions in wireless network. We

now extend this framework to model and anomaly detection

in SG systems.

We use a linear approximation V=Dx of the value func-

tion,1 where V is a vector collecting the values V (s), x is

a vector of coefficients and D is the projection basis. The

optimal vector x∗ can be computed as the solution of

x∗ = min
x

‖ρ−(I−γP)Dx‖2
2, (5)

where ρ, P and I are the matrices collecting the values ρ(s),
the transition matrix and the identity matrix, respectively.

We use a Diffusion Wavelets-based (DW) [11] set of basis

functions as projection matrix D. DW captures similarities of

the operator P at different time scales (number of hops in the

logical graph) and different locations (vertices of the graph).

Due to the intimate connection between the value function

and powers of the transition matrix, and the considerations on

the connectivity of the logical graph mentioned before, DWs

appear to be an excellent candidate for a sparsifying basis for

the value function V. The procedure to derive D from P is

described in [11].

The projection onto the diffusion wavelet domain can accel-

erate the learning of the value function Ṽ from a sample path

of state observations. In particular, the observed sample path

[(S(t)]t=0,...,T is used to estimate P̃.2 The computation of the

basis set W is based on the predicted behavior of the SG.

However, anomalous behavior may result into different transi-

tion probability matrices, and thus, different matrices D. Thus,

as a first step, the algorithm detects the representation basis

most suited to the trajectory in a set {Di}i=1,...,I by using

sparse group Least Angle Selection and Shrinkage Operator

(LASSO) [8]. Sparse group LASSO solves the optimization

problem

y∗(t) = arg min
y

‖ρ − (I − γP̃(t))Dy‖2
2

+λ1

I
∑

i=1

‖yi‖2 + λ2‖y‖1, (6)

where D=[D1, . . . ,DI ] and y = [y1, . . . ,yI ]. Sparse Group

LASSO promotes the concentration of non-zero coefficients

in a small sub-set of the groups {yi}i=1,...,I (group sparsity)

via the regularization term
∑I

i=1
‖yi‖2. Moreover, sparsity

1Linear approximations have been widely used in the literature, see [10].
2The elements of P̃ are obtained by counting the occurrences of a transition

from s to s′ and dividing by the occurrences of s.

of the solution within the individual group is promoted by

the regularization term ‖y‖1. We select the basis set (model)

Di∗ associated with the y∗
i (T ) with the highest energy i∗ =

arg maxi‖y
∗
i ‖

2
2, where T is a pre-defined training time.

For the selected Di, the LASSO algorithm [12] can be then

used to estimate the value function as

x∗(t) = arg min
x

‖ρ − A(t)x‖2
2 + λ‖x‖1. (7)

where A(t) = (I − γP̃(t))Di and t>T . In the compressed

sensing literature, the matrices B(t)=(I−γP̃(t)) and D are

generally referred to as the sensing matrix and the represen-

tation matrix, respectively.

Different from traditional learning approaches, at every new

observation, the whole value function is updated. Intuitively,

due to the projection of the DW subspace, an updated transi-

tion probability from one state to another updates the recov-

ered structured in every “similar” transition, and at all the time

scales involved. Note that the sensing matrix B̃(t)=(I−γ
˜̃
P (t))

is a function of time and affected by estimation noise. In order

to stabilize the solution x̃∗(t) over time, we adopt the LS CS

algorithm proposed in [13]. At time t, LS CS makes use of the

previous solution x̃∗(t−1) and the current estimated transition

matrix P̃(t) to compute the new vector x̃∗(t). For a detailed

description of LS CS interested readers are referred to [13].

The estimated vector x̃ and Ṽ=Dx̃ can be used to detect

anomalies. Differences between x̃ and Ṽ=Dx̃ and x and V

indicate an anomalous functioning of the grid. An anomaly is

detected if ‖V−Ṽ‖2>τ , where τ is a predefined threshold.

IV. NUMERICAL RESULTS

We applied the proposed algorithm to a toy scenario

with 360 states. The overall chain is composed by 5
sub-chains modeling weather conditions, energy price, con-

sumer state, energy consumption and fossil fuel produc-

tion.3 The temporal evolution of the weather and con-

sumer behavior are modeled as random walks. Referring

to the indexing W={1, 2, . . . , Nw}, we define the proba-

bilities p+
w =pw(j+1|j), p−

w =pw(j−1|j) and p=
w =pw(j|j),

with p+
w +p−

w +p=
w =1. Analogously, referring to the indexing

C={1, 2, . . . , Nc}, we define the probabilities p+
c =pc(j+1|j),

p−
c =pc(j−1|j) and p=

c =pc(j|j), with p+
c +p−

c +p=
c =1. Small

and large values of W (t) are associated with low and high

renewable energy production. The probabilistic maps Γ, Φ
and Ω are not reported here due to space constraints. The

consumption function Γ is defined such that high energy price

drives consumption down. The pricing function Φ sets a high

price if consumption is larger than production, whereas a

small price is set to encourage consumption in the specular

case. The fossil production function Φ is designed to slowly

compensate imbalanced energy consumption and production.

We use a simple cost function ρ(S(t))=|F (t)+R(t)−L(t)|
that penalizes imbalanced energy production-load. We remark

that the model can be easily extended to more complex cases

and behaviors.

3Renewable energy production is assumed to be a deterministic function of
the weather and is not included in the state space.
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Fig. 1. y∗ for the predicted and anomalous system. The non-zero coefficients
concentrate in y1 and y2, respectively.
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Fig. 2. Value function for the predicted and anomalous system.

We first show an example of model detection via Sparse

Group LASSO. Fig. 1 shows the estimated y∗ where

D=[D1, D2] and [D1 and D2 correspond to DW computed

for the predicted system and a system where a defective

pricing and production strategy is leading to instability. It can

be observed how the coefficients concentrate in the different

portions of y∗ in the normal and anomalous operating regime.

Thus, Sparse Group LASSO enables the detection of the

correct DW basis set for the estimation of the value function,

as well as the detection of anomalies at the structure level of

the transition matrix.

We now focus on the online learning of the value function

and on the detection of anomalies in the value of the transition

probabilities once the model has been detected. We define Van

and Ṽan as the real and estimated value function. If the system

is running in an anomalous fashion, the transition probability

matrix and/or the pricing and consumption function are dif-

ferent than those generating V. We define ∆an=‖V−Van‖2,

∆̃=‖V−Ṽ‖2 and ∆̃an=‖V−Ṽan‖2. Thus, we expect ∆̃ and

∆̃an to converge to 0 and ∆an as the estimate of the transition

matrix, respectively.

Fig. 2 shows the value function associated with the predicted

and anomalous system. The performance of the proposed

algorithm is compared with that achieved if Q-learning is used

to estimate the actual value function of the system [6]. In Fig. 3

shows ∆,∆̃ and ∆̃an as a function of time for the proposed

algorithm and traditional Q-learning. The proposed algorithm

shows an impressive convergence rate of the estimate of the

value function. In fact, based on a number of observations

comparable to the number of states, ∆̃ and ∆̃an converge

to the wanted values. Q-learning requires a large number of

observations to accurately estimate the actual value function.
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Fig. 3. ∆,∆̃ and ∆̃an as a function of time. In the predicted model we

have set p−

w =0.2, p−

c =0.4, p−

w =0.5 and p
−

c =0.3. In the anomalous system,

these probabilities are set to p
−

w =0.5, p
−

c =0.3, p
+
w =0.3, p

+
c =0.2. Thus,

the anomalous system has a smaller production of renewable and a larger
energy consumption on average.

Thus, after a short training period the difference between the

predicted and estimated value function can be measured to

detect anomalies in the behavior of the grid. The value of the

threshold τ realizes a tradeoff between false alarms and correct

detection rate.

V. CONCLUSIONS

A novel algorithm for the detection of anomalies in the

behavior of SmartGrid systems was presented. The algorithm

uses wavelet projection and a sparse approximation technique

to estimate the value function of the actual system and com-

pare it with the value function computed based on prediction.

Numerical results show that the proposed algorithm detects

the anomaly from a very small number of observations.
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