Plug Loads and Zero Net Energy Buildings in California

Cathleen Fogel, Ph.D.

Sr. Analyst, Demand Side Programs

Energy Division, California Public Utilities Commission

November 5, 2013

cathleen.fogel@cpuc.ca.gov

Presentation drawn from "The Technical Feasibility of ZNE Buildings in California" study, [Arup (PG&E), 2012]

See CALMAC.org, search ZNE to download

ZNE Tech Feasibility Methodology

Estimate lowest possible EUI of 12 Building Types

- Repeat analysis in 5-7 California Climate Zones
- Define resulting building characteristics
- Model solar production
- Assess ZNE Feasibility
- •Identify primary barriers and opportunities
- Develop a tool for the analysis of design variants

Findings

- ZNE buildings are technically feasible for 75% of all buildings square footage projected for 2020
 - With existing and expected technologies
- Plug Loads play a large role!
 - Assumed 50% reduction in average plug load usage for commercial buildings (except hospitals and schools)
 - from baseline of projected usage
 - Assumed 20% reduction in residential
- High overall uncertainty in plug load assumptions
 - Ubiquitous controls, but average occupants
 - No behavioral assumptions included
 - Developed by New Buildings Institute

Plug Loads and ZNE

- Must be addressed to reach ZNE
 - Efficiency trends are good
 - Overall volume is problematic
- Software and controls will improve auto-off functions
- Monitors and T.V.s are a big part
 - LED improvements should help here
- Need to move from "just in case" (systems always on) to "just in time" (systems that respond to need)

Key Measures

Rank	Measure	TDV\$/ft ² *
1	LED Efficiency	-\$4.70
2	Plug Load Reductions	-\$2.57
3	Fan and Duct Efficiency	-\$0.77
4	95%+ Efficiency Gas Appliances	-\$0.54
5	Natural Ventilation	-\$0.41
6	Windows U Factor and SHGC	-\$0.32
7	Heat Recovery (air, mech., and water)	-\$0.28

*Values are projected TDV\$ reductions per total construction volume.

Technical Feasibility Summary

TDV\$/ft² (30 yr)

Percent of 2020 New Build		15: Palm Springs		12: Sacramento			3: Oakland			
		Load:	Solar:	Net:	Load:	Solar:	Net:	Load:	Solar:	Net:
Single Family Home	47%	12	-12	0	10	-10	0	8	-8	0
Multi-family Low-rise	8.5%	20	-20	0	15	-15	0	14	-14	0
Multi-family High-rise	3%	30	-11	19	23	-11	12	17	-12	5
Medium Office	2.1%	24	-24	0	19	-19	0	16	-16	0
Large Office	6.9%	22	-7	15	17	-7	10	15	-8	7
Strip Mall	6.7%	27	-27	0	24	-24	0	22	-22	0
School	2.8%	32	-32	0	27	-27	0	22	-22	0
Large Hotel	1.5%	47	-14	33	41	-13	28	41	-14	27
Grocery	1.8%	69	-69	0	68	-68	0	64	-64	0
Sit-down Restaurant	1.0%	150	-95	55	132	-93	39	114	-99	15
Hospital	1.9%	64	-16	48	61	-15	46	61	-17	44
Warehouse	6.6%	9	-9	0	7	-7	0	7	-7	0
College	1.7%	41	-40	1	36	-36	0	31	-31	0
Other Commercial	7.9%	32	-22	10	28	-20	8	25	-19	6

Plug Load Energy Consumption Study: Evaluation of Available UEC estimates (residential)

IOU 2013-14 study (SCE- Dan Hopper)

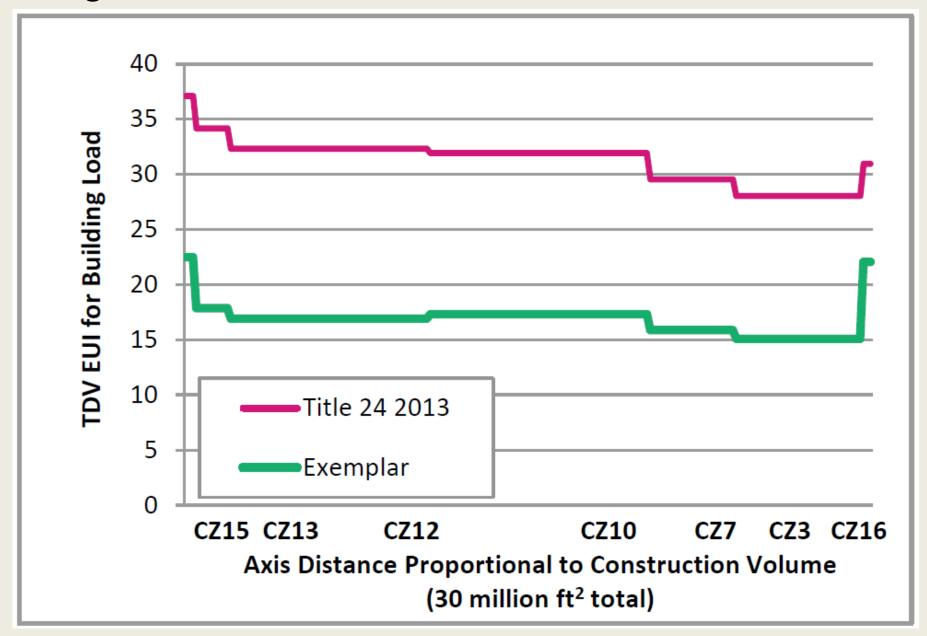
Phase I Objective:

- Develop better UECs and household saturation estimates
- Develop more accurate building models and energy usage intensity (EUI) targets for ZNE buildings Method

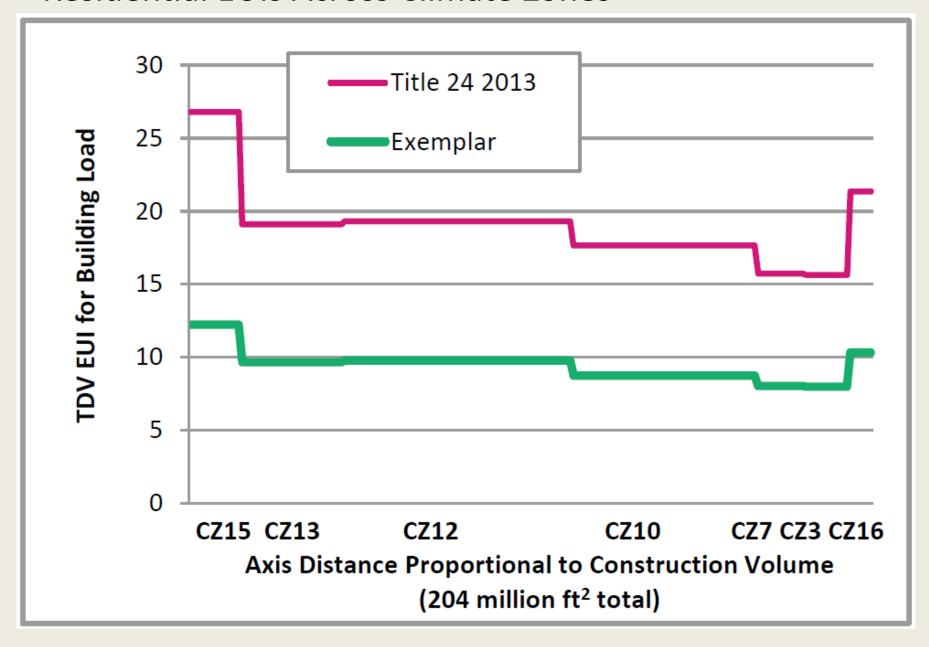
Method

- Identify the most current and defensible estimates of UECs
- Explore using utility smart meter disaggregation for UEC estimation
- Conduct limited MEL metering and household surveying
 - to provide additional UEC and market saturation data

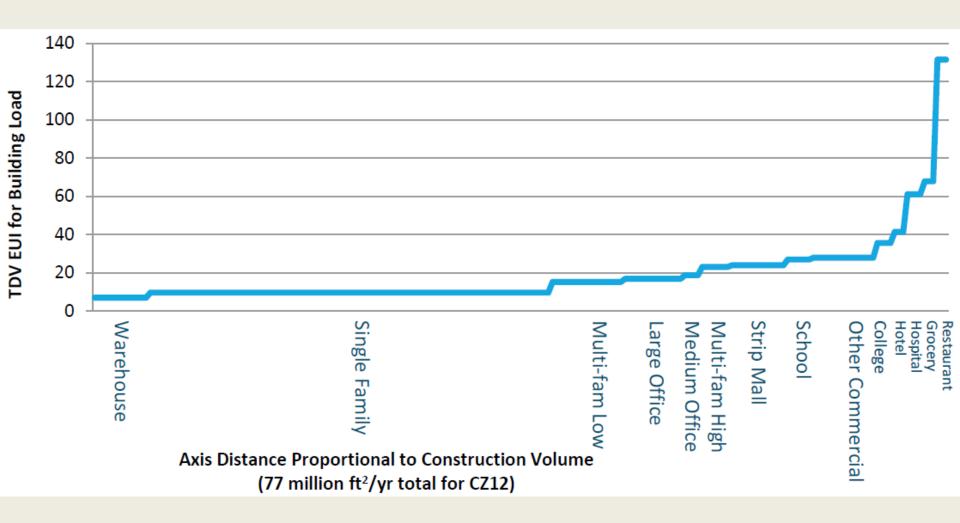
Phase II Objective (budget permitting):


- Select group of plug loads for deeper study
 - estimation of UECs and AECs for baselines
- Focus on PLs with
 - UECs, operating hours, and quantities per household that differ significantly or for which little research has been done.
- Focus on measures already included as PLA program offerings or that may be "good candidate" measures for future EE programs.

Panel questions


- Coordinated manufacturer efforts would be helpful
 - Energy Division consultants working on Market Transformation policy framework paper to assist in crediting
 - Could include incentives or simply coordination
- Moving from EE to IDSM policy framework and programs?
 - PG&E "Whole Store" Retailer trial testing mid-stream incentives for a bundle of technologies
 - SDG&E testing HEMs engagement strategies → 5% reductions!
 - New integrated proceeding (IDSM) → challenging!
- Coordination- move to a Plug Loads Program Advisory Group
 - Could include IOUs, manufacturers, stakeholders, Energy Division, researchers
 - Envisioned as part of current informal "Rolling Portfolio Cycle" stakeholder discussions

ADDITIONAL SLIDES


Large Office EUIs Across Climate Zones

Residential EUIs Across Climate Zones

Climate Zone 12 – EUIs by Building Type (example)

