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Abstract—Recently, Electric Vehicles (EVs) have been con-
sidered as new paradigm of transportation in order to solve
environmental concerns, e.g. air pollution. However, EVs pose
new challenges regarding their Battery LifeTime (BLT), energy
consumption, and energy costs related to battery charging. The
EV power consumption may be estimated by having the route
information and the EV specifications. Also, by having the battery
characteristics, the battery capacity consumption and the BLT
may be estimated for each route. In this paper, we propose a
driving management which uses the above-mentioned information
in order to optimize the driving route by being aware of the EV
energy consumption, energy cost, and BLT. Our proposed driving
management extends the BLT by 16.8% and reduces the energy
consumption by 11.9% and energy cost by 12.6% on average, by
selecting the optimized route instead of the fastest route.

I. INTRODUCTION AND RELATED WORKS

In 2012, transportation accounted for about 28% of total
U.S. greenhouse gas emissions, making it the second largest
contributor of U.S. [1]. To tackle this alarming situation and
other environmental concerns such as, global warming, air
pollution, and noise pollution, Electric Vehicles (EVs) have
been seen as the new paradigm of transportation [2]. However,
deploying EVs poses new challenges. EVs rely on electricity
for their electrical propulsion motor mainly provided by the
battery. Therefore, the driving range of EVs is limited to the
battery capacity, which causes “range anxiety” for drivers [3].
Also, because of the higher cost of replacing the battery, e.g.
12,000$ for Tesla Model S 85KWh [4] and 5,500$ for Nissan
Leaf S [5], extending the Battery LifeTime (BLT) and/or
operational time has been seen as one of the most important
research challenges in adopting EVs economically. It has been
shown that an intelligent and advanced Battery Management
System (BMS), built upon the capability of monitoring and
managing the discharge pattern of the battery may decrease
the EV energy consumption, the required battery capacity, and
extend the BLT by utilizing the battery more efficiently and
intelligently [6], [7].

In [8], it has been shown that BMS may be correlated to
route selection or driving management. Hence, the authors
have proposed a route selection algorithm which considers
traffic and energy consumption, in order to find the optimum
route. Their solution is limited to finding the optimum route
just for avoiding the “range anxiety” that an EV may cause,
at a particular time (short-term decision making) and does not
consider the BLT. Moreover, [9] has proposed an algorithm
to find the most efficient route based on the data gathered
from the vehicle efficiency. Existing driving managements do
not consider BLT, where it is a property that is affected by
consecutive EV usages pattern by the user and its value cannot
be estimated unless in the long run. Therefore, users may need
to take informed decision of their route selection everyday
based on the battery characteristics.

A. Motivational Case Study on Vehicle Fuel Economy

To understand the vehicle’s fuel economy under various
speeds, we have performed an experiment using the available
data found in the existing literature [4], [10]. We have com-
pared the relationship between the fuel economy and speed
in an EV, with an Internal Combustion Engine (ICE) vehicle.
Our experiment shows that, EVs and ICE vehicles have very
different characteristics and complexities. As shown in Fig. 1,
the efficiency of an ICE vehicle is almost at its maximum when
driving around 40-60 miles per hour (mph). However, for an
EV the efficiency drops significantly as the speed increases
to more than 25mph. Moreover, the available battery capacity
decreases in higher discharge-rates (rate-capacity effect) [11]
(see Section II-C for more details). Therefore, if we consider
this effect, the fuel economy of the EVs might change signif-
icantly.
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Fig. 1. Fuel Economy Comparison between an EV, e.g. Tesla Model S and
an ICE Vehicle [4] [10].

Summary and conclusion from observations: the observa-
tion shows that the characteristics of the EVs and ICE vehicles
are different. Moreover, the fuel economy of the EV is also
highly dependable on the battery characteristics. Therefore,
it has been verified that the existing solutions [9] from ICE
domain may not be adopted for efficient driving management
or route selection for the EVs.

On the other hand, according to the EV roadmap [12], the
number of EVs expected to penetrate into the power grid
is very high. This is a very positive road map from the
greenhouse gas emissions point of view, but it will create new
challenges for the existing power grid. The electricity load
(power) demanded by EV chargers is mainly related to their
charging rates, e.g. Level I, Level II, and Level III chargers
consume about 1.4KW, 3.3-6.6KW, and 50-70KW, respec-
tively [13]. Therefore, the increase in EV penetration level
may impact the electricity consumption pattern by increasing
the daily peaks [14]. The increase in the peak load demand
may also result in thermal overloading, voltage drop, and
transformer efficiency drop [15]. To address these concerns,
different battery charging algorithms for managing and shifting
the load demand have been proposed. In [12], authors have
analyzed the impact of EVs on the load shape and compared



it with the case in which the Time-Of-Use (TOU) rates have
been applied for load shifting. Since the route where the EV is
driving in, affects its energy consumption, it will also influence
the energy consumed from the power grid and the energy cost
to recharge the battery. Therefore, by driving management or
route selection, the driver may be able to decrease the power
grid energy consumption and energy cost, by having adequate
information from the power grid.

B. Problem and Research Challenges

The problem of maximizing the electric vehicle battery
lifetime while minimizing the energy consumption and cost
by driving management poses the following key challenges:

e Existing driving managements do not consider the battery
characteristics for managing the driving:

o Battery rate-capacity effect has not been considered for
evaluating the energy consumption and range prediction.

o Battery operational time has not been accounted into
decisions for driving management, besides energy con-
sumption and cost minimization.

e They also have not accounted the energy consumption and
energy cost from the power grid into driving management.

C. Our Novel Contributions and Concept Review

To address the above-mentioned challenges, a novel driving
management for maximizing the battery lifetime and minimiz-
ing the energy consumption and cost is proposed that employs:

1) Modeling and Estimation of EVs (Section II) which
models and estimates the EV power train consumption
using multiple variables, e.g. speed, acceleration, and etc.
Modeling and Estimation of Battery (Section II-C)
which models the battery characteristics, in order to es-
timate the influence of EV power consumption on BLT.
Modeling and Estimation of Power Grid (Section II-D)
which models the power grid and battery charging, in order
to estimate the energy consumption and energy cost related
to the battery charging.

Energy-Optimal Battery-Aware Driving Management
(Section III), based on the proposed modeling and estima-
tions, minimizes the battery lifetime in the EVs by manag-
ing the driving, e.g. route selection, while minimizing the
energy consumption and energy cost from the power grid.
Experimenting and Analyzing the Driving Management
Influence (Section IV) on the BLT, energy consumption,
and energy cost for multiple state-of-the-art benchmark
EVs, e.g. Tesla, Nissan, and Fiat.

Fig. 2 describes our novel driving management methodology
for maximizing the battery lifetime and minimizing the energy
consumption and energy cost.
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Fig. 2. Energy-Optimal Driving Management Methodology for Maximizing
the Battery Lifetime.

II. SYSTEM MODELING AND ESTIMATION
The information about the driving route (Section II-A)
enables us to evaluate the EV power train consumption at
each instance of time by having the power train model
(Section II-B). Since the EV power is mainly provided by
the battery, the current drawn from the battery is evaluated
based on the previously measured power consumption. By
having the battery model (Section II-C), the instantaneous
battery capacity and the BLT will be evaluated. Moreover,
by knowing the power grid model and the battery charging
algorithm (Section II-D), the energy consumed from the grid

and the cost of recharging the battery are evaluated.

A. Route Condition Model

Nowadays, drivers typically utilize GPS-based navigation
systems to help them find the route to their destination. Hence,
the route information such as the route segments, route length,
and route duration, is known before driving. Other information
about the route such as route slope may be gathered from the
existing databases [16]. Gathering this information may help
us to precisely model the route. A drive profile is defined, to
encapsulate the route information into a multi-variable array.
The drive profile consists of the route slope, the average speed
of the EV, and the route length. The information used for
generating the drive profile can also be generated from standard
drive cycles which are typically used for testing, simulation,
and verification of vehicles, e.g. NEDC [17]. The structure of
the drive profile includes: 1) the steps to reach the destination
(8); 2) the length of each step (¢5); 3) the average speed of the
vehicle in each step (vy); and 4) the slope of the route in each
step (as). Therefore the drive profile is a vector of n tuples
(1s Vs ais), in which n is the number of steps in the route.
B. Power Train Model

By providing the drive profile to the EV model, the power
requirements for the EV are measured. Fig. 3 shows an EV
architecture to help understanding our EV model.
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Fig. 3. System-level EV model Developed in the AMESim Tool [18].

In our EV model, all the forces such as: F;, Fyero, and Fiop
which may affect the vehicle motion in terms of speed and
acceleration, are summed as resistive force (Fj.es) [18]. Fy; is
the force caused by the gravity in different route slopes. The
« variable in Eq. 1 is the percentage of the route slope, e.g.
100% value for « represents the route slope of 45°. m is the
vehicle mass and g is the gravitational constant. F.,, is the



aerodynamic drag force caused by the air striking the vehicle
body. This force depends on the vehicle speed (v), wind speed
(Vwind), air density (pgq-), penetration coefficient (C,), and
vehicle active area (S) (Eq. 2). Since, the vehicle speed affects
the force quadratically, it may limit the vehicle top speed. F;.oy;
is the rolling friction force resisting the motion of the wheels
and tires. The equation for F,,; has one constant (f) and
two proportional friction coefficients (K, wind) (Eq. 3) which
depend on the vehicle specifications.

F,; =mx g xsin(arctan(0.01 x o) ) (N) (1)
Foero =1/2 x Paiﬁ x Cp x S x (v+ Vwmd%z (V) 2
Frot =mxgx f+Kxuv+windxv? (N) 3)

The forces generated by the components inside a vehicle, e.g.
the electric motor (F;,.) and the brake (Fj, k) are summed as
the total force (Fj,;). The resulting acceleration of the vehicle
depends on the subtraction of Fi..s from F},; and the vehicle
mass (see Eq. 4).
a F tot — F, res

2

— (/%) )
When F.. is positive and the speed needs to be maintained,
the vehicle should provide enough forward force to prevent
deceleration. In this case, the force is generated only by the
electric motor (F,-). On the other hand, when F.., is negative
and the speed needs to be maintained, the vehicle needs to
provide backward force to prevent acceleration. In this case,
the force may be generated by the electric motor and the
brakes. The force generated by the electric motor is due to
the generation mode (Fy, < 0), is limited to F,,;,, and may
not provide enough backward force to neutralize the resistive
force (Eq. 5). Therefore, the rest of the backward force is
generated by the braking pads (Eq. 6).

Fdr :max(FminaFtot) (N> (5)
Fb'rak:e:Fdr_Ftot (N) (6)

The mechanical power that drives the vehicle is the multiplica-
tion of Fy, and v. Moreover, the electric motor has an energy
conversion efficiency (9ot0r) less than 100% and it varies by
the torque and the rotational speed [19] (Eq. 7).
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In this paper, the specifications for three EVs (Tesla Model
S 60KWh, Nissan Leaf S, and Fiat 500e) have been used to
validate the power train model [4] [5] [20].

C. EV Battery Model

The battery is mainly providing the power for the EV,
therefore, an accurate battery model may help us to estimate
the precise battery consumption and its influence on the BLT.
Moreover, the battery pack structure is important for modeling
the battery. The specification for the battery pack used in
our experimental three EVs may be found in [4] [5] [20].
The nominal capacity (C),) of the battery pack depends on
the structure and each battery cell capacity [21]. The battery
cell nominal capacity is measured at the discharge rate of
(I, = 0.2C) [22]. The C rate is the discharge rate in which
the battery depletes in one hour.

Lithium-ion batteries are mainly used in EVs, and as we
have stated before, the usable capacity of these batteries
may vary based on the discharge rate (capacity-rate effect).

This effect is empirically modeled as Peukert’s Law [23].
For instance, according to [22], by increasing the discharge
rate from 0.2C to 2C' the discharged capacity of the battery
decreases from 2857mAh to 2500mAh at the cut-off voltage
of about 3.2v. The relationship between the usable capacity
and the discharge rate is expressed in Eq. 8, in which pc is
the Peukert Constant which is measured for each battery type.
The equation shows that by increasing the discharge rate, the
efficiency of converting chemical energy to electrical energy
decreases and more chemical reactions are needed to provide
the same electrical energy. Therefore, the effective current
increases more by increasing the discharge rate (Eq. 9) which
results in lower usable capacity.

C =C,(I,)I) " (4h) (8)
Ly =T(I/I,)" ™" (A) ©)

The State of Charge (SoC) of a battery shows the battery state
at that moment and how much capacity still has remained, out
of C,,. As you see in Eq. 10, the effective current is considered
in the estimation of the SoC. And, as the discharge rate
increases, the changing rate of SoC increases hyperbolically.
SoC? is the initial SoC ztttime ZEr10.

SoC' = SoC® — 100 x ) (Iefp/Cy)dt (10)

Using the power train and the battery models of three EVs
(Nissan, Fiat, and Tesla), we have evaluated the driving range
of the EVs for different speeds. The results (see Fig. 4) show
that the usable capacity of the battery changes for different
speeds. This verifies that considering the battery model in
estimating the EV driving range may be essential for driving
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Fig. 4. Estimated EV Range w/ or w/o Considering the Battery Model.

The battery Depth of Discharge (DoD) shows how much
capacity has been used out of C,, in one cycle of the battery
use. C,, degrades as the battery ages in each cycle. The
capacity degradation rate depends on the DoD [6]. After about
20% of capacity degradation, the battery will become useless.
The BLT is the number of cycles the battery can be used until
the cut-off edge. For instance, as shown in [24], by increasing
the DoD from 20% to 50%, BLT decreases from 2100 to 1000.
Based on this observation and the data set presented in [24], the
relationship between the BLT and the DoD is approximately
modeled in Eq. 11. The constants « and /3 are measured for
different types of batteries.

BLT = a x (l/DoD)ﬁ (cycles) (11)
In this battery model, it is assumed that the battery cells
are utilized evenly while powering the EV. The aging effect,
capacity degradation, and the decrease in usable capacity are



distributed evenly among all the battery cells. This assumption
is not an overestimation as per paper [25], where the proposed
configuration and scheduler may manage the even distribution
of the power on the battery cells [21].
D. Power Grid Model

The EV batteries are typically recharged by connecting
them to the power grid. Hence, knowing the power grid
specifications and characteristics may help us to analyze and
optimize the influence of EV driving management on the power
grid side, e.g. energy consumption and energy cost.

To charge an EV, drivers may use the ordinary 110v outlet
existing in the U.S. houses (Level I) or use the 220v outlet
for faster charging (Level II). However, they may utilize other
power electronics like super chargers to make the charging
process faster. Each charger has its own specifications in case
of charging rate, power, and cost. The charging rate may be
variable and can be adjusted by the battery charging controller.

Utilities providing electricity may have different pricing poli-
cies [12]. For instance, in the first case, the electricity rate
is constant throughout the day (Flat Rates). However, in the
second case, the electricity rate changes based on the Time-Of-
Use (TOU), in order for the Utilities to reduce the electricity
demand peak. As opposed to Flat Rates case, in TOU Rates
case, the users have incentive to change the battery charging
time such they minimize the energy cost of recharging. As
shown in Table. I, in the TOU Rates case, on-peak hours
ends at 10pm. Therefore, most of the charging time may be
scheduled from 10pm until the departure time, to reduce the
charging cost. However, in the Flat Rates case, the charging
time may be scheduled as soon as the driver arrives home.

TABLE 1. SPECIFICATIONS OF THE POWER GRID.
Name Property Value
TOURates ] | On-peak((11am-10pm) | 0.15085
Hectricity Rate ($/KWh) Off-peak((10pm-11am) | 0.01514
Rat Ratesl($/ KWh) 0.06507

A driver may decide to use the battery partially and charge
the battery every day to the full state instead of discharging
completely to zero and charging back to the full state, for
example, every week. In this case, the DoD decreases and the
BLT increases. However, as stated in [24], Ah throughput is
going to be the same which results in the same capacity degra-
dation. Therefore, the aforementioned charging patterns of the
battery may have a negligible effect on the BLT. Charging and
discharging the battery partially decreases the charging time
and may provide the driver with the flexibility of deciding on
the charging schedule. For instance, the driver may choose to
follow the earlier pattern and charge the vehicle during the
midnight when the electricity price is lower. However, in the
later pattern, the charging period is the maximum and it may
overlap with the time when the electricity price is higher.

In the chosen battery charging algorithm, as part of the
power grid model, we use the partial charging pattern. Algo-
rithm 1 illustrates a pseudo-code which schedules the battery
charging such that it reduces the energy cost while meeting
the departure time of the user. The algorithm receives user-
specified departure time (0 < t; < 23), the current time
of the day (0 < ¢, < 23), and the current battery status
(0 < SoC < 100). The outputs of the algorithm are the
estimated energy consumption (energy), energy cost (cost),

and the adjusted current to charge the EV battery (). The
total battery capacity (C'ap), the start time (¢,) and end time
(toe) for the off-peak hours, the electricity rates ($,,, $,,), and
the maximum charge rate which the charger is able to provide
(mazxy), are defined (lines 1-6). In line 7, the remaining battery
capacity which needs to be charged is evaluated using SoC.
In line 8, the length of the time interval when there is off-
peak hours until the departure time, is evaluated. In line 9, the
optimum charge rate during the off-peak hours is evaluated. In
line 10, the amount of the battery which will be charged during
off-peak hours is evaluated. In lines 11-12, the remaining
battery capacity which needs to be charged during on-peak
hours and the length of the time interval when there is on-
peak hours are evaluated. In line 13, the optimum charge rate
during the on-peak hours is evaluated. The charge rates are
limited to the maximum charge rate, in lines 9 and 13. In line
14, the amount of the battery which will be charged during
on-peak hours is evaluated. The total energy consumption and
energy cost are estimated in lines 15-16. Eventually, the charge
rate is assigned based on the current time (lines 17-20).

Algorithm 1: EV Battery Charging Algorithm

Input: Departure Time ty

Input: Current Time t¢

Input: Battery Status SoC

Output: Estimated Energy Consumption energy

Output: Estimated Energy Cost cost

Output: Charge Rate |

// define the battery total capacity
1 Cap = 60K Wh

// define start and end time for off-peak hours
2 tos = 22
3 toe = 11

// define electricity rates from Utility
4 $,, = 0:15085
5 $,= 0:01514

// define the maximum charge rate possible
6 max; = 4KW

// evaluate capacity remaining to charge
7 Cap,,,, = (100 0 SoC)=100 [ Cap

// time interval when there is off-peak hours
8 Timeqr = (Min(toe;ty) [ max(tos;tc))%24

// the charge rate during off-peak hours
9 |4 = min(max, ; Cap,,,=Time,q)

// the charged capacity during off-peak hours
10 Charged,; = | o5 L Time,p

/> evaluate capacity remaining after charging

during off-peak hours */

1 Cap,,, = Cap,,, [ Charged

/> the time interval remaining to charge

subtracting the off-peak hours */

12 Timeem = (tq U te U Timeyy) %24

// the charge rate during on-peak hours
13 |y, = min(max; ; Cap,,,,=Timeren)

// the charged capacity during on-peak hours
14 Charged,,, = | o [ Timeoy,

// the estimated total energy consumption
1s energy = Charged,, + Charged ,z

// the estimated energy cost
16 cost = Charged,, [} $o+ Charged,gz [ $on

/* deciding the current charge rate based on
time */
17 if tc 2 off-peak then
18 L | = |,;ff
19 else
20 L I = 1o

21 return energy; cost; |




III. OPTIMAL DRIVING MANAGEMENT

By having the start and end points of the driving, multiple
alternative routes may be generated and their detailed informa-
tion is stored as drive profiles (see Section II-A). The power
train model estimates the power consumption of the EV based
on the drive profile (see Section II-B). The power consumed
in the EV is provided by the battery. Therefore, the battery
consumption and the BLT are estimated using the detailed
battery model (see Section II-C). The EV battery will be
recharged by connecting to the power grid (see Section II-D).
An algorithm may be implemented to recharge the EV battery
intelligently in order to reduce the energy cost according to
the Utility’s specifications (see Algorithm 1). Therefore, each
drive profile will result in a specific route duration, energy
consumption, energy cost, and BLT. By having all the above-
mentioned information, the driving management optimizes the
route in order to extend the BLT and reduce the energy
consumption and energy cost while maintaining the timing
requirements for the route.

A. Optimized Route Selection

All the models, equations, and algorithms described in
previous sections enable us to find the energy-optimal and
battery-aware route. The driving management which tries to
find the optimized route may be formulated as a mixed integer
non-linear programming optimization problem:
i « cost + [ energy — v BLT (12)
Alternatives = map (start, end)

min.
subject to :

Y drive-profile € Alternatives

T = drive-profile [” time”

P = power-train-model (drive-profile)

(BLT, SoC) = battery-model (P)

(cost, energy) = power-grid-model (SoC)

0<T<T .
The objective of this optimization problem (Eq. 12) is to
minimize the energy consumption (energy) and the energy cost
(cost) and maximize the battery operational time (BLT). Each
variable has a weight of optimization («, £, and ~y). The se-
lection of the drive profile (drive-profile) must be done among
the alternatives found by giving the start and end points of the
route. The equations, models, and algorithms are formulated as
non-linear constraints in the optimization. The route duration
(T) is extracted from the drive profile (drive-profile). An array
representing the EV power consumption (P) is evaluated by
the power train model (see Section II-B), by having the drive
profile (drive-profile). The battery model (see Section II-C)
will evaluate the battery operational time (BLT) and the final
SoC, using P. The energy consumption and energy cost are
estimated by using the power grid model (see Section II-D),
knowing the battery status (SoC). Moreover, the route duration
(T) is limited to T', such that the optimizer does not sacrifice
the time (for energy consumption, energy cost, or BLT) more
than the driver’s preferences.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The Google APIs [16] are used to provide the information
needed for the drive profiles. For our experiment, multiple
routes in which ordinary drivers who commute from their
house at “omitted for blind review” to their office at "omitted

Our Optimized Route/

&E=

4
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Fig. 5. Map Showing All the Alternative Routes. The Routes for Comparison
are Also Labeled. (the figure is more visible in color printed version)

for blind review” and return, in a daily manner, are used as
drive profiles (see Fig. 5). Also, three different EVs (Tesla,
Fiat, and Nissan) have been used as the study cases, in order
to analyze the influence of the route selection for various EVs.

To implement the optimization problem, various multi-domain
co-simulations have been performed using AMESim [18],
an automotive design software, MATLAB/Simulink [26], and
GridMat [27].

B. Comparison to the State-of-the-Arts

Different driving managements have been co-simulated for
multiple drive profiles in three EVs. We compare our optimal
driving management (see Section III) with three other state-
of-the-art driving managements. All the driving managements
have selected the following routes (see Fig. 5):

1) Fastest Route: the route with the least duration time is
selected [16].

2) Economic Route: the route with the least amount of energy
consumption is used [8].

3) Green Route: the route with the least fuel consumption
for ICE vehicles is selected [9].

4) Our Optimized Route: the optimal route which extends the
BLT and minimizes the energy consumption and energy
cost (using the optimization problem in Section III).

Energy Consumption: the drive profiles selected by
the above-mentioned driving managements have been co-
simulated. The energy consumed from the power grid for
recharging the EV batteries is shown in Fig. 6. The results
show that by sacrificing about 3 minutes, our optimized
route shows 11.9% energy consumption reduction on average,
compared to the fastest route.
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Fig. 6. Analysis of Energy Consumption for Recharging the EV Batteries in
Different Driving Managements.



Battery Lifetime: the influence of the EV power consumption
on the EV batteries has been analyzed. Based on the equations
in Section II-C, the BLT has been estimated for the drive
profiles selected by different driving managements (see Fig. 7).
The results show that using our optimized route instead of the
fastest route, will result in 16.8% BLT extension on average.
Datalon thelbarsishowsthe ® Economic/Route = Fastest[Route

routedurationtimel(min) # OurOptimized Route
2400

m GreenRoute

BatterylLifetimel(cycle)
)
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Battery Lifetime Analysis in Different Driving Managements.

TeslalModel S60KWh

Fig. 7.

Energy Cost: the cost of charging the Nissan Leaf batteries
after co-simulating the drive profiles selected by the driving
managements, has been evaluated for two cases of TOU Rates
and Flat Rates (see Fig. 8). The results show that the cost
of recharging the batteries has reduced 12.6% on average, by
using our optimized route instead of the fastest route.
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V. CONCLUSION

The deployment of EVs is growing rapidly, mainly be-
cause they provide zero-emission solution for transportation.
However, EVs pose new research challenges in terms of their
battery lifetime, energy consumption, and the energy cost
of recharging the batteries. In this paper, we have proposed
a novel driving management which utilizes the detailed EV
model, battery model, and power grid model, in order to
estimate EV power consumption, BLT, energy consumption,
and energy cost. Based on the estimated values, the driving
management selects an optimized route such that it extends the
BLT and minimizes the energy consumption and energy cost
for short-term and long-term uses. Our driving management
has been applied to three EVs. The results have shown that
using our optimized route instead of the fastest route, may
increase the driving time by 3 minutes. However, the energy
consumption and energy cost may reduce by 11.9% and 12.6%,
respectively, and the BLT may extend by 16.8%.
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