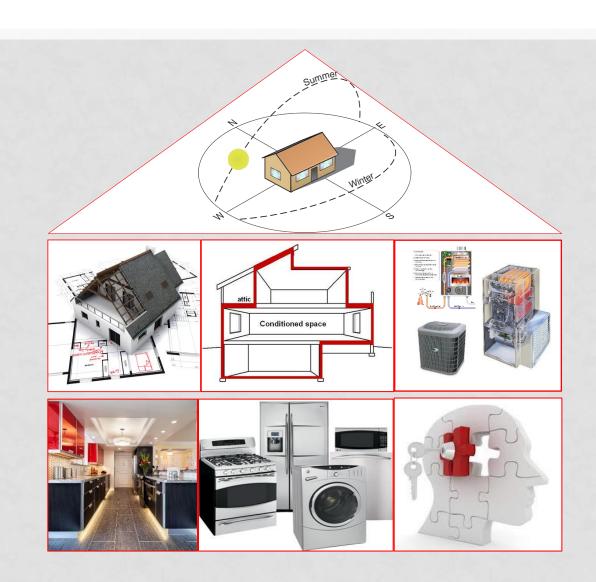


COMPONENTS OF AN ENERGY EFFICIENT HOME

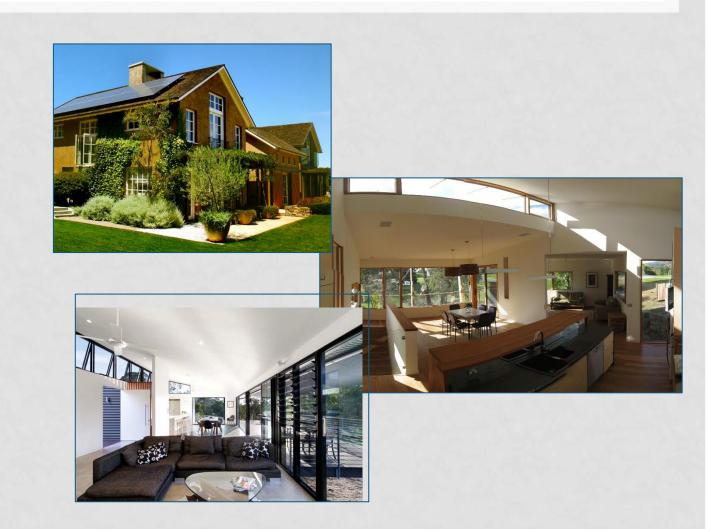
PRESENTED BY ENERGY INSPECTORS

ABOUT ENERGY INSPECTORS


- 1. Founded in 1996
- 2. We provide comprehensive design, consulting and inspections services focused on energy efficiency and sustainability to the building industry
- 3. Operations in Arizona, California, Colorado, Nevada and Texas
- 4. 4th Largest LEED for Homes Provider in the nation
- 5. EPA ENERGY STAR Partner of the Year for the past 10 years

PURPOSE OF HOME

- 1. Safety
- 2. Comfort
- 3. Investment
- 4. Enable Experiences


ELEMENTS OF AN ENERGY EFFICIENT HOME

- 1. Building Orientation
- 2. Architectural Design
- 3. Building Envelope
- 4. Mechanical Systems
- 5. Lighting
- 6. Appliances
- 7. Behavioral

BUILDING ORIENTATION

- 1. Maximize annual energy yield of the PV Array
- 2. Maximize daylighting opportunities (windows along south walls)
- 3. Orient for cross ventilation

BUILDING DESIGN

- 1. PV Friendly Roof design
- 2. Window Shading
- 3. Mechanical Systems Location
- 4. Open Floor Plans

BUILDING ENVELOPE – WALL ASSEMBLIES

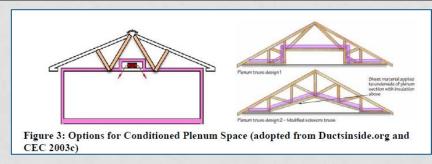
- 1. Minimize Air Leakage
- 2. Control heat flow
- 3. Moisture Management

BUILDING ENVELOPE – HIGH PERFORMANCE WALLS

Wall Component	Scenario 1	Scenario 2
Framing Dimension	2X4	2X6
Framing Spacing	16"	16"
Cavity Insulation	R-15	R-19
Exterior Insulation	R-8	R-5

CEC Definition of High Performance Wall System: 0.051 U-factor

BUILDING ENVELOPE – HIGH PERFORMANCE ATTICS


Objective:

- 1. Control Heat Flow
- 2. Efficient Environment for Mechanical Equipment to Operate
- 3. Minimize Impact on Indoor Air Quality

UNVENTED ATTIC

VENTED ATTIC – CONDITIONED PLENUM SPACE

MECHANICAL SYSTEMS – HEATING & AIR CONDITIONING

- 1. Minimize Energy Consumption
- 2. Bring air distribution equipment into conditioned space
- 3. Personalize Comfort

Standard Split-System

Mini-Split

Variable Refrigerant Flow (VRF)

MECHANICAL SYSTEMS – VENTILATION

- 1. Maintain positive indoor air quality
- 2. Minimize energy losses during ventilation
- 3. Minimize impact on occupants behavior

Ventilation Component	Strategy
ASHRAE 62.1	ERV/HRV
Bathroom/Laundry	Exhaust
Kitchen	Exhaust
Whole House	Climate Specific

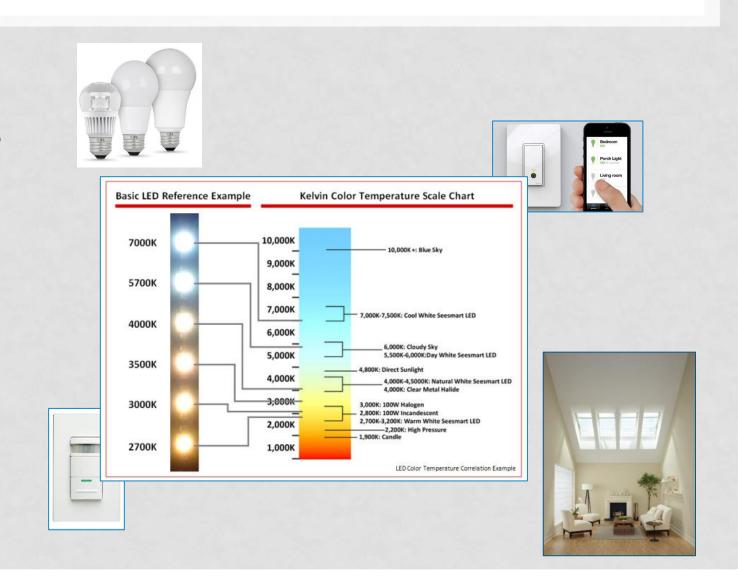
MECHANICAL SYSTEMS – WATER HEATING SYSTEM

Objective:

- Only Heat Water That Will be Utilized
- 2. Minimize Energy Consumption
- 3. Reduce Hot Water Delivery Time

Non-Condensing Tankless Water Heater

Condensing Tankless Water Heater



Solar Thermal

LIGHTING

- 1. Reduce Energy Usage While Lighting Is In Use
- 2. Reduce Unnecessary Loads with Smart Controls
- 3. Match Lighting to Space Requirements
- 4. Utilize Daylighting

APPLIANCES

- Reduce Energy Usage
 Without Compromising
 Usefulness
- 2. Increase Energy
 Efficiency With Smart
 Controls
- 3. Go Beyond Energy

BEHAVIORAL

- 1. Sensors
- 2. Data
- 3. Controls

CONSIDERATIONS FOR NEW PRODUCTS

- Is labor base trained to install product?
- Is there wide availability of the product, ideally from 2 or more sources?
- Does the product negatively impact the production schedule?
- If the product increases the cost of construction, can that cost be translated into increased appraisal value? If not, can it assist in closing home faster?