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Abstract— Cyber-Physical Energy Systems (CPES) are an amal-
gamation of both power gird technology, and the intelligent com-
munication and co-ordination between the supply and the de-
mand side through distributed embedded computing. Through
this combination, CPES are intended to deliver power efficiently,
reliably, and economically. The design and development work
needed to either implement a new power grid network or upgrade
a traditional power grid to a CPES-compliant one is both chal-
lenging and time consuming due to the heterogeneous nature of
the associated components/subsystems. The Model Based Design
(MBD) methodology has been widely seen as a promising solution
to address the associated design challenges of creating a CPES. In
this paper, we demonstrate a MBD method and its associated tool
for the purpose of designing and validating various control algo-
rithms for a residential microgrid. Our presented co-simulation
engine GridMat is a MATLAB/Simulink toolbox; the purpose of
it is to co-simulate the power systems modeled in GridLAB-D as
well as the control algorithms that are modeled in Simulink. We
have presented various use cases to demonstrate how different lev-
els of control algorithms may be developed, simulated, debugged,
and analyzed by using our GridMat toolbox for a residential mi-
crogrid.

I. INTRODUCTION AND RELATED WORK

Currently in the power systems industry, there is a paradigm
shift from the traditional, non-interactive, manually-controlled,
power grid to the tight integration of both cyber information
(computation, communications, and control - discrete dynam-
ics) and proper physical representations (the flow of electricity
governed by the laws of physics - continuous dynamics) at all
scales and levels of the power grid network. This new grid
which features this cyber and physical combination is termed
as Cyber-Physical Energy Systems (CPES) [1], and it is ex-
pected to improve the reliability, flexibility, efficiency, cost-
effectiveness, and security of the future electric grid [2, 3].
However, the introduction of Distributed Energy Resources
(DERs) including renewable sources, and new types of loads
(specifically Electric Vehicles (EVs)) in the residential distribu-
tion grid presents the challenge of multi-level monitoring and
control for supply and demand management to an already com-
plex and heterogeneous grid. A consequence of the rapid addi-
tion of these DERs would be that traditional power system de-
sign methodologies become more time-consuming to perform
and that the ability to preempt grid problems would be more
difficult. Authors in [4] demonstrate a potential model of fu-
ture energy systems: a cyber-physical network which consists
of many diverse energy components, each of which is equipped

with a local embedded system. Developing an optimal grid is
a complex task, due in part to the need for modeling and ana-
lyzing the system at both different scales and across different
information domains. To solve this issue, Model-Based De-
sign (MBD), which has been proposed in recent publications
[4, 5, 6], allows for modeling both the physical and cyber com-
ponents concurrently. Moreover, it allows cyber-physical co-
simulation to explore for various design alternatives required
for designing, validating, and testing. With such an imple-
mentation, power systems may be virtually analyzed and ad-
vanced control algorithms may be developed without the need
for physical prototypes because software would be able to esti-
mate the dynamic behavior of the system under a large variety
of conditions.

In [5], a generic MBD methodology for a cyber-physical sys-
tem design has been discussed. In [4], a novel cyber-based
dynamic model is proposed where the mathematical model is
primarily based on the cyber world which is helpful for distri-
bution decision making. While various domain-specific power
system simulation tools currently exist, there is a critical gap
of advanced system-level design methodology and tools in the
modeling and simulating (of both discrete and continuous dy-
namics) of the cyber and physicals portions of CPES concur-
rently. State-of-the-art domain-specific power system model-
ing tools lack the capability to capture the cyber-components
of CPES during modeling and simulation. On the other hand,
tools capable of describing the discrete event dynamics of
the cyber components are not well equipped with the mod-
els needed to best represent the physical dynamics of power
systems. Therefore, cyber-physical co-simulation of different
domain specific tools has been seen as the possible enabling
technology [7, 8, 9].

In [6], a MBD framework that uses SystemC for the pur-
pose of designing embedded systems for energy management
is proposed. A residential electrical energy simulation plat-
form (HomeSim) is proposed in [10] to evaluate the impact
of technologies such as renewable energy and improved bat-
tery storage through centralized and distributed energy man-
agements as well as smart appliances. A co-simulation tool
MATLAB & EnergyPlus [11] for building energy automation
solution (MLE+) is proposed in [7]. In [9], a Ptolemy II-based
[8] co-simulation software environment, Building Controls Vir-
tual Test Bed (BCVTB), for coupling different simulation pro-
grams is presented (co-simulation including EnergyPlus [11]
and Matlab). In [12], a co-simulation of GridLAB-D [13] and
MATLAB is used to model integrated renewable energy and



Demand Response' (DR). In this co-simulation, the control
developed in MATLAB (which acts as slave of the simula-
tion) is executed as a co-process of GridLAB-D and cannot
support a debugging utility function for the control engineers.
To achieve cyber-physical co-simulation capability and to en-
hance the physical library of GridLAB-D, in [14], authors have
presented a technique of using a functional mockup interface
to integrate Modelica-based components with GridLAB-D. In
[15], a co-simulation platform that consists of communication
and power systems (ns-3 [16] and GridLAB-D) is presented.

CPES covers various scales and levels including residen-
tial/commercial/industrial buildings [17, 18], microgrid (see
Section III for details), distribution (substation and feeder lev-
els) and transmission levels [19], and generation side [20]. In
this paper, we consider a residential microgrid as an example
of a CPES and demonstrate the capability of the MBD method-
ology. Moreover, we present our cyber-physical co-simulation
tool GridMat (see Section IV.C) for the purpose of residential
microgrid modeling and simulation.

The rest of the paper is organized as follows. Section II
presents the itemized content of the paper. After describing
the residential microgrid in Section III, we present the MBD
of the residential microgrid in Section IV. Experimental re-
sults are discussed in Section V before concluding the paper in
Section VL.

II. CONTENT OF THIS PAPER

e We present a model-based design methodology for a resi-
dential microgrid which is an example of a CPES. We also
present a MATLAB/Simulink toolbox (GridMat) where
structural and behavioral aspects of a residential micro-
grid may be modeled using GridLAB-D from the Graphi-
cal User Interface (GUI) of the GridMat tool, and various
control algorithms may be modeled using the graphical
language of the Simulink. Moreover, using this GridMat
tool, the developed cyber-physical model may be simu-
lated, debugged, and analyzed.

e In the MBD methodology, MATLAB/Simulink utilities
such as the embedded code generator are used for imple-
mentable software generation in order to support a high
fidelity Hardware-In-Loop Simulation (HILS).

e To demonstrate the capability of the presented MBD
methodology for a residential microgrid, we have mod-
eled a large residential microgrid (using IEEE 13 node
test feeder and 1000 houses with various appliances, etc.)
and have studied various use cases of developing control
algorithms that would be able to address some of the chal-
lenges that might occur in a residential microgrid such
as demand response, peak load reduction, and reliability
(voltage drop control at the demand side).

II1. RESIDENTIAL MICROGRID

The traditional power grid where electricity typically flows
only from large scale generation sites (mostly fossil-fuel-
powered and nuclear powered) to a distribution grid through the
transmission lines has been transformed to a more (bi-/)multi-

IDemand response in power grids is a dynamic demand mechanism to manage cus-
tomer power consumption in response to supply conditions due to the balancing of supply
and demand of power.

directional electricity flow system due to integration of vari-
ous DER including renewable sources. This shift in electricity
flow, rising costs of electricity production, and a better under-
standing of environmental impacts require balancing mecha-
nisms between the supply and the demand of electricity [21].
As a solution to this challenge, microgrid solutions have been
proposed both in academia and industry. A microgrid is a local-
ized and semi-autonomous group of electrical energy resources
(which consists of different storage and generator technolo-
gies such as photovoltaics, wind turbines, fuel cells, and mi-
croturbines) and electrical loads (industrial, commercial, and
residential consumers) that connects to the traditional power
grid (macrogrid) [21]. A microgrid can operate in two modes:
(1) grid-connected mode where the microgrid is connected di-
rectly to the macrogrid, and (2) island mode where the micro-
grid can disconnect itself from the macrogrid so as to operate
autonomously in physical and economic conditions. This capa-
bility to operate in these modes allows a microgrid to provide
additional reliability to the demand side.
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Fig. 1. A conceptual view of a residential microgrid

Besides typical deployment of microgrid in military instal-
lations, universities, and remote locations, a microgrid may be
deployed in a typical residential area®. Fig. 1 illustrates a high
level overview of a residential microgrid which consists of res-
idential loads as well as DERs such as an energy storage.

Safety, security, protection, demand-side energy manage-
ment, power quality, imbalance/asymmetry, plug and play op-
eration of DER systems, distributed voltage/frequency profile
control, and non-autonomous/autonomous operation are some
of the challenges in designing and operating a microgrid in the
residential area [22]. To solve these challenges, various local
distributed controllers will need to be designed typically at the
distribution level.

The design and validation of such a residential microgrid is
a complex and demanding task because of the heterogeneous
multi-domain components of the system. MBD method en-
ables the designers to develop and validate the CPES by ab-
stracting the details of a large system at a high level so as to per-
form the needed design space exploration in a short time; more-
over, it is useful to validate and evaluate the design quickly
without using real physical plant.

21n the case study of this paper, we have considered a microgrid that is deployed in a
residential area, and name it as a residential microgrid.
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Fig. 2. Using GridMat tool for MBD of the residential microgrid

IV. MODEL-BASED DESIGN

In the scope of the presented MBD methodology, we de-
velop a model-in-the-loop simulation (MILS) environment us-
ing multi-tool co-simulation capabilities. Our methodology is
capable of generating control software which will allow us to
validate our model and increase the fidelity of the simulation by
using both Software-In-the-Loop Simulation (SILS) and HILS
environments.

Before starting to model a residential microgrid, the require-
ments, components/subsystems, structure, location, and prob-
lems should be defined. For example, we want to design a res-
idential microgrid which consists of 1000 single family houses
with multiple instances of level II EV chargers and low-rate
step-down transformers in a mid-size distribution power grid.
This residential microgrid should be able to manage and or-
chestrate the operation of all the individual chargers and trans-
formers with respect to EV charging, demand response, and
reliability of power system using residential load control. By
using this information, the CPES could be modeled, simu-
lated, and validated according to the MBD methodology. Fig. 2
shows the main steps of the MBD methodology of a residential
microgrid. We explain these steps in detail as follow:

A. Modeling the Power Grid for the Residential Microgrid

To develop and analyze a CPES, the model of the physi-
cal plant which consists of both the structural and the behav-
ioral models should be developed according to the require-
ments. The structural model of a residential microgrid in-
cludes the building-architectural model of houses, end-use ap-
pliances, distributed energy resources, transformers, and dis-
tribution power grid. On the other hand, the dynamic parts of
a residential microgrid such as the appliance tasks, energy de-
mand, weather, etc. are captured by behavioral modeling.

GridLAB-D is the most promising state-of-the-art tool for
modeling a distribution power grid, especially a residential mi-
crogrid. GridLAB-D is an open-source, agent-based, multi-
domain (power domain, market domain, weather domain,
and built-environment domain such as building-related struc-
tural parameters) modeling and simulation tool for distribution
power systems which is developed by PNNL [13]. Discrete
Event (DE) model of computation, and agent-based simula-
tion enable GridLAB-D to model and simulate a large scale
distribution power grid at different levels of granularity which
allows for the modeling of the end-use appliances necessary
for a residential microgrid. However, GridLAB-D is limited

¥
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at modeling and designing the discrete dynamics required for
the microgrid management, e.g., the embedded systems and the
control algorithms in CPES.

B. Modeling the Grid Management Algorithms

We have used Simulink the data flow graphical program-
ming language tool to design, model, and simulate various con-
trollers for a residential microgrid. MATLAB/Simulink has a
rich library to implement various types of control algorithms,
e.g. Model Predictive Control (MPC).

C. Cyber-Physical Co-Simulation

After modeling both the continuous and discrete dynamics
of the residential microgrid, the integrated model needs to be
simulated on a desktop-based simulator to analyze, verify, and
validate according to design requirements. By adjusting the
parameters of the model, different behaviors of the model may
be captured through cyber-physical co-simulation which allows
designers to validate the design precisely. For a residential
microgrid, we have developed GridMat [23] which is a multi-
tool/multi-domain co-simulation platform to overcome the lim-
itation of modeling and simulation of a cyber-physical distribu-
tion power system.

GridMat: is a cyber-physical MATLAB toolbox that sup-
ports modeling, simulation, analysis, and validation of a dis-
tribution power system such as a residential microgrid. The
major features of GridMat are: (1) access to all MATLAB tool-
boxes as well as the Simulink graphical programming language
to design, develop, and debug advanced, hierarchical, and dis-
tributed control algorithms. Therefore, device-level and vari-
ous Supervisory Control And Data Acquisition (SCADA)-level
control algorithms may be developed for the residential micro-
grid very effectively; (2) a user friendly GUI for the state-of-
the-art GridLAB-D tool; (3) a model creator that helps design-
ers create the structural and behavioral models of a residential
microgrid; (4) a data analysis utility that enables the designers
to analyze the simulation results and the grid impact under var-
ious scenarios and allows modification of the controllers; (5)
an embedded C code generator allows the designer to conduct
a HILS for the purpose of validating the fidelity of the design.

In GridMat, GridLAB-D and MATLAB/Simulink commu-
nicate together through the HTTP protocol over the TCP/IP
stack. A HTTP client wrapper is developed in GridMat in order
to handle the co-simulation data exchange through HTTP be-
tween GridLAB-D and MATLAB/Simulink. Fig. 3 illustrates
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Fig. 3. Our GridMat architecture

the structure of GridMat in detail. The GridMat core is the mas-
ter of the co-simulation that runs an instance of GridLAB-D,
makes a TCP/IP connection to the GridLAB-D instance, con-
trols the co-simulation run time, and coordinates the writing
and reading of parameters from and to GridLAB-D. Also, the
core runs controllers which are implemented in the m-file edi-
tor or Simulink. The creator block in MATLAB creates GLM
files (the GridLAB-D model files) based on the structural and
behavior models which the user defines through the Human-
Machine Interface (HMI). The GridLAB-D core loads the in-
put GLM files and the IEEE test feeder library to simulate the
physical plant of the microgrid by using different modules such
as climate, power flow, and residential. It also generates some
output files (CSV files) which may be used by the GridMat
plotter in MATLAB to show simulation results to the user for
validation and verification purposes.

D. Verification and Validation

The behavior of the control algorithms may be captured by
formal verification and validation. In this step, the simula-
tion result is analyzed and verified to ensure that the design
requirements have been satisfied. An iterative approach may
be applied here for debugging and validating the design by re-
visiting previous steps to modify the models of the physical
plant, embedded computational system, control algorithm, and
parameters of the models. The embedded software part may be
tested without the real physical plant by using the HILS capa-
bilities of GridMat. In HILS, a hardware platform should be
selected to interact with the physical plant and run the control
algorithm while it is able to persist in the environment. Then,
the modeled controllers should be synthesized to generate an
embedded software that may be executed on the real hardware.
To perform HILS, the physical plant runs on the simulation tool
(GridLAB-D) while the controller runs on the real embedded
hardware and communicates with the simulated physical plant
through our GridMat.

TABLE I
HOUSE AND APPLIANCE SPECIFICATIONS

Object Type 1 Type 2
Number of stories 1 2

Floor area 2100 sq.ft 2500 sq.ft
Heating system GAS GAS
Cooling system Electric Electric
Thermal integrity NORMAL ABOVE
Motor efficiency AVERAGE | AVERAGE

Number of occupants 3 5

Heating set point 68° F 68° F
Cooling set point 72° F 72° F
Light power 1.2 kW 1.5 kW
Dishwasher power 1 kW 1.5 kW
Water tank volume 40 gal 50 gal
Water heater power 3 kW 4 kW
Clothes washer power | 0.8 kW 1 kW
Miscellaneous 0.7 kW 0.8 kW
Compressor power 0.5 kW 0.6 kW
Oven 2.4 kW 3 kW
Oven set point 500" F 500" F
Dryer power 2 kW 3 kW

V. CASE STUDY EVALUATION

We demonstrate our tool and methodology using various use
cases of a residential microgrid. The detailed residential mi-
crogrid model is present in [24]. In this model, 1000 residen-
tial single family houses are randomly distributed in the IEEE
13 node test feeder [25]. Each step-down transformer is con-
nected to a node of the IEEE 13 node test feeder, and hosts a
range of 3 to 7 houses. These step-down transformers range
in rating from 15K VA to 35K V A, depending on the number
of connected houses. The houses are randomly selected from
two types of houses (Typel and Type2) which have a variety
of end-use appliances such as dishwasher, lights, water heater,
plug load (miscellaneous), refrigerator, clothes washer, dryer,
and oven. Table I describes the specifications of our model.

We have chosen Newark, NJ, USA as the location for our
residential microgrid and have simulated the model for both
Summer and Winter seasons. All the structural and behavioral
modeling of the power system (the physical plant) has been per-
formed through our developed GridMat tool. Fig.4 illustrates
the total average power consumption of a typical Summer and
Winter day for two types of houses in our developed residential
microgrid model. We have validated the fidelity of our model
and the simulation results of various end-use loads and/or ap-
pliances as well as the average total power consumption of the
houses with different sources [24, 26].

As we discussed in section III, demand response for peak-
load reduction, power quality, and voltage drop control are
some of the challenges for current residential microgrids. We
propose implementing distributed control mechanisms where
the controls of such are developed by the MBD methodology
in GridMat by using different MATLAB/Simulink toolboxes
such as MPC and Stateflow.

A. Residential Collaborative EV Charging

Higher rates of EV penetration will have a negative impact
on the electrical power grid because uncoordinated EV charg-
ing on a mass scale at the secondary distribution grid would
negatively affect both the total load and peak load power [27].
The results in [27] show that 30% of peak load power usage can
be attributed to EV charging in the distribution grid. To address
this negative effect, one solution could be to upgrade the power
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Fig. 4. Average power consumption of a house in our residential microgrid

system infrastructure by changing the transformers and adding
more power plants to provide more energy to the residential
grid [28, 29]. Unfortunately, this solution would undermine
the economic and environmental benefits of EVs. Another so-
lution, which would not have such a drastic downside, could
be to control and coordinate the EV charging locally or at the
substation level to mitigate the impact of EV charging from
generating a peak [30]. In order to implement this solution and
to balance the supply and demand, we need new control al-
gorithms which may be tested, verified, and validated through
MILS. Our presented MBD method and the GridMat tool may
help in exploring the possible alternatives.

We have demonstrated the “fair-demand” control algorithm
to coordinate the EV charging by adjusting the charging cur-
rent of each EV according to its demand and the available
power at the transformer level. EV demand is defined by the
expected amount of energy that the EV needs to drive for the
next trip divided by the duration that the EV stays connected to
the charger. Equation 1 shows the demand definition in which
Dj, Eji, and t; are the demand, the expected needed energy for
the next trip, and the time to leave for the next trip, respectively.

Di= Eiti )

The “fair-demand” algorithm uses weights based on the de-
mand parameters to adjust the charging current. According to
Equation 2, W; is the weighted demand for an EV.

Wi = F’Dil )

Dj

We have assumed that the level II EV chargers with the max-
imum rate of 72K Wh are used in the residential microgrid
model. Since the level IT EV charger works at 240V, the max-
imum current for charging, per Ohm’s Law, is 30A. Equation
3 shows the C (current of charging) according to the weighted
demand. P is the available power at the transformer level.

S WixP
Ci= Mln(SODW) (3)
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The “fair-demand” algorithm will equally share the rest
of the available power to charge the battery full after all
EVs receive their demanded energy. Fig. 5 illustrates the
state machine of the fair-demand” algorithm implemented in

Simulink.
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Fig. 5. Stateflow model of the “fair-demand” EV charging algorithm

We have modeled the behavioral aspects of the EV and the
Electric Vehicle Supply Equipment (EVSE)? as per [24] where
EV follows Gaussian distributions for the arrival and the de-
parture time. The mean time of arriving and leaving are 5:30
PM and 7:30AM, respectively. The EVSE controls the charg-
ing current and receives some information from the EV such as
the time to leave, the expected next trip energy demand, and the
specifications of the EV. Besides the “fair-demand” control al-
gorithm, we also demonstrate how to develop the "fair-shared”
control algorithm [32] that may equally divide the available
power among all the EVs connected to one transformer in our
GridMat tool. Moreover, we implement a EV charging con-
trol policy that supports “deferral-based” EV charging (load-

30ur proposed model and algorithm are for advanced EVSEs which are
able to provide variable rate current supply (multiple amperage adjustment ca-
pability) on-demand [31]



shifting) where all householders defer the EVs charging to
9:00PM due to cost of electricity and peak load time of resi-
dential microgrid. In this mode, all EVs are charged at a rate of
3.2KWh to prevent the transformer from overloading. These
control algorithms were experimented on, and the simulation
results of them are shown in Fig. 6.
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Fig. 6. EV charging simulation result at transformer level

While analyzing for a suitable control algorithm, we see
that the result of the “deferral-based” algorithm shows a re-
bound effect due to all the EVs starting to charge after 9:00PM.
However, the “fair-shared” and the "fair-demand” do not show
such a rebound effect and actually keeps the power output of
the transformer at its nominal rate (25KW with 5 connected
houses). In general, the “fair-demand” delivers more energy
to the EV compared to the “fair-shared” and the “deferral-
based” control algorithms, because the “fair-demand” algo-
rithm charges EVs according to their demand and tries to de-
liver all necessary energy to all the EVs before they leave the
houses. However, in the “deferral-based” and the fair-shared”
algorithms all EVs receive equal energy, though at the cost of
some of the EVs leaving their houses without sufficient energy
to complete the expected trip. Such analysis at a high abstrac-
tion level in the MBD allows for development of control algo-
rithms in a rapid and efficient manner, while also assessing the
benefits and consequences of implementing them.

B. Residential Demand Response

DR mechanisms try to reduce the customer power consump-
tion during peak load times or in response to market prices.
Since the majority of energy demand, which accounts for 38%
of the total energy usage, comes from residential buildings due
to a large portion (on average 33%) being used in Heating, Ven-
tilation and Air Conditioning (HVAC) systems, it is an attrac-
tive target for demand side energy management, especially dur-
ing the peak load time period [33, 34]. Also, the water heater is
another flexible load in most homes which significantly helps
to reduce household power consumption during peak load time.
Given that peak load time is generally a critical time period in
the energy market, many utilities have a vested interest in en-
couraging their consumers to optimize their power consump-
tion. If the demand side consumption could be appropriately
curtailed, utilities would not need to add more power plants to
compensate for the extra demand of energy. Some examples of
demand control policies that some utilities might implement in-
clude Time-Of-Use (TOU) rate and Direct Load Control (DLC)
[35] to encourage customers to reduce their demand during the
peak load time. In DLC, customers make a contract with util-
ities, granting them the ability to control some of their appli-
ances during the peak load time in return for some savings on

their electricity bills [35]. Examples of DLC that utilities com-
monly use include reducing the heating set point of the water
heater and/or increasing the cooling set point of the HVAC sys-
tem based on the weather. We have used MPC to control power
consumption of the houses (see Fig. 7) according to a DLC
signal while the inside temperature and water temperature are
within the ANSI/ASHRAE specified [36] comfort zone?.
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Fig. 7. Model-based design of MPC in residential microgrid

Equation 4 shows the cost function of the MPC controller
that we used to control the power consumption of a house dur-
ing DLC. Ppred, Pref , Ui, and u,ef are predicted power output,
desired power output, manipulated variable, and optimal rest-
ing value, respectively. In this cost function, w is the weight
for each of the variables.

Wi (AU )24+ Wi (Ui- Urest )? “)
MV M Vv

I =w1(Ppred— Pref )2+

In such a DR scenario, the utility sends a Demand Response
Signal (DRS) to the Home Energy Manager (HEM) which
changes the cooling and heating set points of the HVAC and
the water heater, respectively. During the experiment, the DRS
is sent between 4:00 PM to 8:00 PM to reduce the power con-
sumption to 3KW. We have validated the model for two dif-
ferent algorithms, MPC and DLC. In both the algorithms the
cooling and heating set points change between 70°F -78 F
and 115" F -130°F (comfort zone). In the DLC algorithm, the
HEM increases the cooling set point to a maximum value of
78 F and decreases the heating set point to a minimum value
of 115’ F when the DRS is issued. However, these manipulated
variables are changed by MPC according to a future prediction
of the power output, weather, etc. Fig. 8 shows the results of
MPC and DLC as well as the baseline which has no controller.

Our MBD methodology allows us to quickly validate vari-
ous control algorithms for implementing a DR program by the
utilities. During validation, we have observed that MPC re-
duces the power consumption to 3KW when DRS is generated;
however, DLC is not able to keep power consumption at 3KW
in this period. Moreover, DLC shows rebound effect after the
DRS because of decreasing cooling set point and increasing
heating set point.

4Comfort zone is defined as a term of the predicted mean vote (PMV) which is a func-
tion of the average temperature of the air surrounding the occupant, air speed, humidity,
time, location, human activity, expected human clothing, etc.
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Fig. 8. Average power consumption of a house using demand response signal

C. Grid Reliability

Controlling the voltage drop seen at the extremities is one
of the challenges in designing and developing a reliable resi-
dential microgrid. One of the ancillary services® in the power
system is to maintain the voltage level at a particular range
to maintain reliable operations of the power grid and prevent
adverse effects on the operations of equipment. Typically an-
cillary services are provided by the generation side; however,
recent researches show that ancillary services may be provided
through demand side energy management in a residential mi-
crogrid [37]. The voltage is not constant through the power
system because the conductors and power system components
exhibit an impedance to the flow of current and the voltage
tends to decrease as we move closer to the load. Therefore,
voltage drop may be represented as:

A Virop = Lioad X Zcond )

The power consumption of a load, and the impedance of con-
ductors may be represented as:

Pioad = I|2oad X Zjoad ©6)
Zeond = Ziine t Zitrans @)

In Equation 7, Z|ine and Zir ans are the transmission line and
transformer impedance. Finally, voltage drop is represented in
Equation 8. This equation shows how power consumption, load
impedance, line impedance, and transformer impedance impact
the voltage drop. r

PIoad

A Virop = X (Ziine + Ztrans) (8)

load

In a typical power grid, the voltage drop can be controlled by
using voltage regulators and transformer taps. However, in mi-
crogrid, these solutions are not very effective because the out-
put voltage of the renewable distributed energy resources such
as a solar photovoltaic may be reduced by cloudy weather [37].
In the scope of this paper, we demonstrate through our GridMat
tool how to develop an algorithm to reduce the voltage drop for
a residential microgrid by reducing demand during lower sys-
tem voltage. In this case, we have used smart appliances to
control local voltage drop by reducing its power consumption.
A dryer consists of a coil to heat up the dryer and a motor to
turn the drum. Since the coil of dryer consumes a large amount
of power and that most consumers usually do not care (exces-
sively) about the duration it takes to complete a drying task, we
have developed a control algorithm to reduce the voltage drop
by operating the dryer in an energy saving mode.

5Ancillzu'y services support the reliable operation of the transmission of power from
generations to retail customers. Ancillary services include scheduling/dispatch, volt-
age/frequency control, load following, system protection, and energy imbalance.

We have defined three modes of operation for a dryer: (1)
normal; (2) high; and (3) critical. In normal mode, the dryer
works with full capacity of its coil. The dryer reduces the coil
capacity to 70% during high mode and turns off the coil in a
critical mode. The motor of the dryer works normally during all
of the above mentioned operation modes. The users can switch
from the high or critical modes to the normal mode if they want
to speed up the drying task at any time. The controller senses
the local voltage and switches from normal to high mode when
the voltage is less than 118V and from high to critical when
the voltage is less than 116V. In reverse direction, we add a
04V dead band; therefore, it is 1184V to switch from high to
normal and 1164V to switch from critical to high.
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Fig. 9. Local voltage control by using smart dryer

Fig. 9 illustrates the results of the local voltage control that
come from using a smart dryer. The Local Voltage Control
(LVC) algorithm shows that there are smaller voltage drops
compared to the baseline. LVC reduces the voltage drop by
reducing the power consumption of the dryer when the voltage
drop is high. The power consumption of the LVC algorithm is
less than the baseline when the voltage goes below the thresh-
olds. Our GridMat tool helps to quickly compare and validate
different control algorithms to improve the power grid reliabil-
ity before deployment into a real physical plant and the corre-
sponding hardware.

D. Hardware-In-Loop-Simulation

After exploring the residential microgrid in MILS, we have
generated the software as a C application by using MATLAB
Embedded code generation for the purpose of running on real
hardware. For this purpose, we have conducted a HILS by
using GridMat and an open-source NETGEAR N300 wire-
less router which are both connected together through Ether-
net. GridMat runs the model of the physical plant (residential
microgrid) in GridLAB-D and handles the communication be-
tween controller and physical plant by using a HTTP wrapper.
During HILS, GridLAB-D runs in real-time mode to emulate
the physical plant. Fig. 10 shows the structure of the HILS
which we have conducted to validate and test the controller on
real hardware.

VI. CONCLUSIONS

In this paper, a model-based design methodology has been
used to design, develop, and analyze a residential microgrid.
Moreover, a cyber-physical co-simulation tool (GridMat) that
has been developed by the authors for distributed power sys-
tems such as a residential microgrid is presented. Various use
cases have been studied to demonstrate the capability of exper-
imental MBD method for developing a heterogeneous multi-
domain CPES. The results show that MBD is able to capture
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Fig. 10. Structure of MILS and HILS in GridMat

all aspects of CPES by modeling, simulating, and validating
the design.
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