Plug Loads: Challenges and Opportunities

Michael J. Klopfer, PhD

California Plug Load Research Center

California Institute for Telecommunications and Information Technology

May 12, 2016

www.calplug.org

CALIFORNIA PLUG LOAD RESEARCH CENTER

Why investigate plug loads?

Source: Graph created by Ecova with data from EIA 2008 Annual Energy Outlook

Factors in plug load increase

Home medical care and mobility

Rise of overlooked devices

Overhead associated with automation control?

Changing habits/lifestyles

Energy and respiratory disease

	Rate (hrs/day)	Energy/day (kWh)	Energy/yr (kWh)	Pop.
СРАР	8	0.4-0.8	146 - 292 kWh	25M
O ₂ Concentrator	24	8.64 - 16.56	3153.6 - 6044.4 kWh	1,425,431 CA

Chronic respiratory disease is one of numerous diseases on the rise, specially with an aging population.

Smart devices for energy savings

Classic IoT Installation:

- Increased vampire load
- New Infrastructure load
- Potentially very large savings potential

Occupancy Sensor Installation:

- Low vampire load (potentially under 1mW)
- Simple configuration, low intelligence

An EDISON INTERNATIONAL Company

Case Study: Connected LED Light Bulb

Smart bulb vampire (standby) power usage Average = 0.38 W

Smart bulb ON power usage Average = 7.86 W

Motion sensors for control

Vampire load considerations

	Standby Power	On Power	Usage	kWh Usage
Regular LED Lightbulb	0 W	9.62 W	4 Hours/Day in ON state (normal)	14.0 kWh/yr
IOT Smart LED Lightbulb	0.38 W	10 W (9.62W+0.38W)	2.8 Hours/Day in ON State (~30% reduction)	13.1 kWh/yr

Equivalent Bulb (or plug load luminary) without IoT Technology

Smart Bulb (or plug load luminary) with IoT Technology resulting in 30% usage reduction

Only 6.4% decrease in energy usage with 30% reduction in ON time state due to IoT energy overhead at device level only

Behavior Based Savings Opportunities

CALIFORNIA PLUG LOAD RESEARCH CENTER

Energy savings in the classroom

The overlooked teacher's computer Creating Connections. Powering Innovation. Boosting Efficiency.

Projector Buddy: A Tool for Classroom Energy Management

Commitment to training the leaders of tomorrow

Projector Buddy: Classroom Energy Management

Smart EV Charger

- Secure WiFi controller for large residential loads (dual speed pool pumps)
- PLSim rapid plug load simulation

SparkyStrip – load desegregation

Thank You!

