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Urban IoT

Urban IoT and Smart City

Processing

Information

Citizens ServicesSensors

Info & 
Control

• Interconnection between “smart” services and infrastructures	

• Interconnection between citizens and technology	

• City-wide information generation	

• City-wide information processing

Information acquisition and processing system to enable “interactions” in the city
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Current Approach

Processing

Information

Citizens ServicesSensors

Control

Centralized Architecture

• Wireless edge of the network	

• Processing centers

Will likely overload:

Many heterogeneous streams of data (e.g., video, air quality, traffic, positioning) 
flowing to central processing centers

and create additional issues:

• Coexistence with “traditional” traffic	

• Energy consumption (sensors and mobile)



3

Solution: Multi-Scale Architecture

Network Infrastructure Cloud

Edge 
Cloud

Local Access Networks

Personal 
Cloud

LTE Wi-FiCity-wide Sensor Mesh

Surveillance & 
monitoring Cluster

Local 
computing

Local 
computing

Personal Mobile 
Sensor Cluster

Problem is inherently multi-scale!
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Solution: Multi-Scale Architecture
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Multi-Scale Computation 
• In-device computing	

• Local Cloud (fog computing)	

• Edge computing	

• Cloud services

(Coexisting) Multi-Scale Communications 
• Device-to-Device	

• Wireless Edge (LTE, Wi-Fi)	

• Infrastructure
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Solution: Multi-Scale Architecture

More Efficient 
• Cross-System Sensor Selection 

(Less traffic, less energy,…)

More Effective 
• Processing-Oriented and Self-

Adaptive Communications

Faster Reaction 
• In-Device and Edge computing 

= smaller latency
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Application Scenario

Crowd Monitoring, Event Detection and Tracking	

video, biometric, city-wide sensors
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Solution: Multi-Scale Architecture

Architecture 
• Interconnects computational and network 

resources	

• Interconnects Heterogeneous Networks 

and Systems
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The local problem: Body Area Networks

End-to-end encryption
of sensitive data

Internet

Back-end serverSmart phoneBody sensors

ECG and ACC

ACC

SpO2

Client application with GUI

Service manager

Transmitter
[encrypt/
decrypt]

Analyzer
[plug-in

modules]

Local storage
[user configuration]

[analyzed data]
[raw data]

Data collector

ACC

Local socket or IPC

GPS
Device manager

ECG SpO2

• Sensor transmission rate selection	

• Battery constraints	

• Packet loss	

• Maximize accuracy

Activity detection - body area networks
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of deciding between controls. We expect that for low values
of , will achieve better detection accuracy than

since for the latter scheme, there are situations that
even though the constraint in (29) is satisfied, there is a non-zero
belief for the rest of the states. If these states are “highly” con-
fusable with the true state, more detection errors will occur. On
the other hand, cleverly selects between available
controls to also bound the worst-case error probability, satis-
fying the constraint in (30), thus decreasing the error proba-
bility. As a result, will have slightly higher energy
consumption.

VI. CASE STUDY: THE KNOWME NETWORK
In this section, we evaluate the performance of the schemes

presented in Sections IV and V. Our simulations are driven
by experimental data collected by a prototype WBAN, the
KNOWME network [5], and energy costs experimentally
determined during its operation.
The KNOWME network [5] consists of a Nokia N95 fusion

center with a built-in tri-axial ACC that samples at 30 Hz, and
a commercial Bluetooth-enabled ECG, which is also equipped
with a tri-axial ACC. The ECG samples at 300 Hz while the
built-in ACC at 75Hz. The external sensors simply transmit data
to the fusion center via Bluetooth; while the mobile phone per-
forms coordination, processing, computation and sample col-
lection. The energy consumption of receiving data from each
of the sensors has been experimentally determined [5] to be
0.063W for the Nokia N95 internal ACC, 0.108W for the ECG,
and 0.084 W for the external ACC. The difference in reception
power for the last two sensors can be explained by their different
data rates. Clearly, the use of internal sensors or no sensors at all
is more energy efficient compared to Bluetooth communication
of samples from the external sensors. In addition, the number of
samples selected from each sensor quantifies the energy spent
by the cell phone, specifying the energy savings achieved if less
samples are received. On the other hand, if either only the in-
ternal sensors or no sensors are used, the resulting quality of
activity detection may be poor.

A. Simulations Framework, Baseline and Metrics
Data collection was conducted in the lab and consisted of

three to four sessions, where twelve subjects were required to
perform eight specific categories of physical activities. A de-
tailed description of the data collection process, protocols, and
test subject characteristics can be found in [5]. For brevity, we
report results for two individuals only. Here, we focus on dis-
tinguishing between four activities {Sit, Stand, Run,Walk}. We
use three features extracted from the biometric signals: 1) the
ACC Mean, average of the acceleration signal means in each
axis for an ACC data window, from the internal ACC; 2) the
ACC Variance, average of the acceleration signal variances in
each axis for an ACC data window; and 3) the ECG Period,
ECG waveform inter-peak period, from the standalone WBAN
sensor. These features belong to the optimal feature set for the
state detection problem determined by the filter-based feature
selection method proposed in our previous work [5]. The sta-
tistics of the Markov chain and the state distributions for the
three features, for two individuals, are shown in Figs. 1 and
2, respectively. Based on our earlier system description, the

Fig. 2. Gaussian distributions associated with each of the four activities for the
ACCMean, ACC Variance, and ECG Period features for two different subjects.
(a) Subject 1. (b) Subject 2.

cost of receiving one sample from each sensor is
and , respectively,

[5].
All simulations for the DP based algorithms were performed

using a sliding window technique, where the control policy is
derived for fixed horizon length, the first control input is em-
ployed for the current time slot, the window is slided by one
time slot and the process is repeated for the whole length of
the experiment. Unless otherwise stated, all simulations were
performed for horizon length , total number of samples

and were averaged over Monte Carlo runs. The
value of the horizon length was empirically selected based on
how negligible the impact of the control process was on future
states after a certain horizon length. We compare our algorithms
against an Equal Allocation (EA) scheme, which selects equal
number of samples from each sensor, irrespective of the system
state. The total number of samples selected by EA is always
equal to the total number of available samples. The metrics we
employed are as follows:
i. the Average Detection Error (ADE) defined as

;
ii. the Average Unnormalized Energy Cost (AUEC) defined
as ;

iii. theAverage Total Cost (ATC) defined as
;
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The local problem: Body Area Networks
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Consumer-Driven DR

Modeling, prediction and Control in Smart Buildings

Local 
Analyzer

Informative 
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Cyber-Physical System 
• Human Component!	

• Loads	

• Batteries, generation

• Information Acquisition	

• Computation	

• Communications
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Information Acquisition

then the string y is assigned to class κ. Then, the decision rule of the classifier has the form

κθ(s) = argmin
κ

H(κ)(y, θ), (2)

where the minimum is taken over all possible classes κ, and

H(κ)(y, θ) = −
1

|y|
log p(κ)(y, θ), (3)

is the entropy per character of y for class κ, where θ = (θ(κ))κ=1:C is a vector of parameters.
This approach requires class distributions p(κ) to be known. Usually, these distributions are

assumed to correspond to stationary ergodic Markov chains with fixed memory bounded by order M .
Then, the distributions p(κ) are parametrized with conditional probabilities of characters in contexts
of preceding M characters:

p(y, θ) =

|y|∏

l=1

θi(yl−M:l−1), j(yl) =
∏

i,j

θ
nij(y)
i,j , (4)

where indices i and j run through the set of all M -character contexts and all characters in the
alphabet Σ, respectively, and nij(y) stands for the number of times the character j occurs right
after the context i in y. (Superscript κ is omitted for brevity, as the equation has the same form
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Figure 6: Estimated logical state of a game console from
power consumption readings.

for every class.)
The parameters θ(κ) are estimated in-

dependently for each class κ using the
principle of minimal entropy:

θ(κ) = argmin
θ(κ)

Ey

[

−
1

|y|
log p(κ)(y, θ)

]

.

Given a corpus of pre-labeled texts, the
above expectation turns into an empirical
average over the sample of texts belonging
to class κ. It can be easily shown that the
solution of this problem can be estimated
from empirical frequencies nij(·) averaged
out over a sample of messages from the
class κ. One technique of estimating the
distribution p(κ) is Prediction by Partial
Matching (PPM) [80–84].

Preliminary Results A simplified ver-
sion of the proposed methodology was ap-
plied to the online detection of the current
state (main menu, game, game pause, mu-
sic, dvd reading, etc.) of a game console
(Xbox) from power consumption signal. Fig. 6 depicts the signal, the true state, and the estimated
state. The estimator incurs a small detection delay, and the main source of error is some similarity
between the game loading phase and the music playout from DVD. The incidence of these errors
will be reduced by implementing the proposed multi-stage algorithm.

8

Activity Detection from Informative Appliances 	

(Entertainment System)
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Consumer-Driven DR

Modeling and Predicting Human Activity (to control plug loads)
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Consumer-Driven DR

Hierarchical model - from human to appliances to observation
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Consumer-Driven DR

Prediction-based activation of heavy load appliances
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Aging-aware battery control
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Large-Scale: Smart-City Testbed

Resources

Network 
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Nodes

Device-to-Device
and

LTE Comms

Biometric 
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• Emulated network resources (real-world communications)	

• Multi-scale computational resources	

• Software Defined Radio connected to edge processing to introduce joint 

communication-processing intelligence
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Objectives

Develop and test:
Hierarchical Information Compression/Selection
• Select most informative sensors given present objectives/state (e.g., smart 

cameras vs positioning/biometric to detect “events” in the city)	

• Compress information across sensorial system	

• Create feedback loops from larger scales computational resources

Hierarchical Communications
• Content-based protocols	

• Effective coexistence technologies (Cloud-RAN, D2D underlay to LTE, etc)

Resilient Algorithms
• Algorithms resilient to packet loss (information loss)	

• Flexible algorithms capable of adapting to time-varying information input
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Preliminary Results
Content-based Interference Management in real-time video 
processing systems

eNodeB

Video Stream
LTE network

D2D comm.

Data
stream

Processing For
Surveillance
Video

For Animation
Video

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D2D Throughput

O
bj

ec
t D

et
ec

tio
n 

(D
eg

ra
da

tio
n)

 

 

 

 



Thank you!

Marco Levorato	

ICS/CS - University of California, Irvine


