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Abstract—Energy Management Systems (EMS) are mainly
price driven with minimal consumer interaction. To improve
the effectiveness of EMS in the context of demand response,
an alternative EMS control framework driven by resident be-
havior patterns is developed. Using hidden Markov modeling
techniques, the EMS detects consumer behavior from real-time
aggregate consumption and a pre-built dictionary of reference
models. These models capture variations in consumer habits as
a function of daily living activity sequence. Following a training
period, the system identifies the best fit model which is used to
estimate the current state of the resident. When a request to
activate a time-shiftable appliance is made, the control agent
compares grid signals, user convenience constraints, and the
current consumer state estimate to predict the likelihood that the
future aggregate load exceeds a consumption threshold during
the operating cycle of the requested device. Based on the outcome,
the control agent initiates or defers the activation request. Using
three consumer reference models, a case study assessing EMS
performance with respect to model detection, state estimation,
and control as a function of consumer comfort and grid-informed
consumption constraints is presented. A tradeoff analysis between
comfort, consumption threshold, and appliance activation delay
is demonstrated.

Index Terms—Residential demand side management, energy
consumption scheduling, activity recognition, energy manage-
ment system, Hidden Markov models.

I. INTRODUCTION

EMAND response programs would benefit significantly

from residential sector penetration. This sector alone
consumes 22% of US total energy [1] and is growing rapidly.
From 1980-2009, residential electricity consumption increased
by 57.2% due to housing and population growth alone [2].
For programs representing 17% of demand response potential,
residential participation has the impact to provide a 45%
reduction in peak loads [3].

However, only 10% of residents enroll in demand response
programs and even fewer are compliant [4]. These programs
require involuntary or voluntary participation of consumers in
exchange for utility-provided monetary incentives. Involuntary
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automated demand response (AutoDR) gives direct control to
the utility enabling it to clip peaks in demand for discretionary
loads associated with heating and cooling in exchange for
rebates. However, the acceptance of such systems are low as
residential consumers are unlikely to give up autonomy of their
homes to the utility. In contrast, voluntary programs using
Advanced Metering Infrastructure (AMI) rely on consumer
compliance to grid alerts and pricing strategies to manually
shift loads to off-peak hours preserving resident autonomy at
the expense of convenience. For example, to make informed
appliance scheduling decisions, the user must examine their
energy bill, understand their aggregate power consumption,
maintain an active knowledge of contributing appliances, and
be aware of outside grid conditions. Utility pricing strategies
such as time of use (TOU) pricing, dynamic pricing (DP),
and critical peak pricing (CPP), further complicates user load
shifting decision-making.

Energy Management Systems (EMS) offer a partial solution
to obstacles in current residential demand response programs.
These systems utilize the convenience of automated demand
response without compromising residential autonomy. Such
systems, validated through simulated case studies, assume
pricing as a driving factor for residential consumption behavior
and measure consumer satisfaction indirectly through utility
function parameters [S]—[8]. In other words, EMS methods
are constructed from various cost-benefit analyses to shift
loads to times corresponding to minimal cost. If successfully
integrated to the residential sector, price driven energy man-
agement would shift many consumer loads to off-peak times.
Thus, instead of flattening the residential sector consumption
peak, scheduling could potentially result in a shift in the
original peak with respect to time. In this scenario, load peaks
would remain unchanged and utility pricing schemes would
be adjusted to take into account popular demand.

The effectiveness of price-driven energy management
frameworks would benefit by including consumer behavior
as a variable in the optimization of “shiftable” appliance
scheduling. Pricing as a reward for energy curtailment has
shown to wear off with time in other behavioral domains.
Furthermore, the sustainability of monetary incentives is un-
clear for the long term, which could potentially result in a
rebound in demand behavior exceeding pre-program levels
should these incentives no longer be provided [4]. It becomes
necessary to examine the source of demand—the individual
consumer. Residential consumer behavior must be examined to
predict habitual consumption patterns, improve existing EMS
scheduling algorithms, and provide user feedback with respect
to consumption as a function of behavior.

Inclusion of the consumer as part of EMS framework
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presents challenges due to the nonlinearity and complexity
of human behavior. To address this we take a specific human
behavior modeling approach to build a system that directly
includes the resident in the system feedback loop to drive
the scheduling of appliances. Similar to proposed EMS, the
improved EMS shift loads, but does so dynamically—providing
the individual consumer with a unique real-time load control
mechanism as a function of behavior. In contrast to offline data
driven activity pattern discovery, this method requires prebuilt
models facilitating dynamic recognition of daily activity se-
quences sufficient for the appliance scheduling control.

In this paper we make the following contributions to existing
energy management system frameworks:

« Given a household appliance inventory, we build a dic-
tionary of reference models for a single residence as a
means of detecting structured general behavioral activity
from real-time AMI aggregate consumption observations
outlined in Section IV.

e In Section V we dynamically detect resident behavior
sequences and patterns from AMI aggregate consumption
during a training period whereby the best fit reference
model is identified. Following training, the EMS can
estimate the current behavioral states as a function of
the current consumption.

o For an appliance activation request, we implement ap-
pliance scheduling using an activity informed “on-off”
control mechanism. The EMS interfaces with AMI to
receive real-time DR consumption constraints, predicts
the likelihood of exceeding these constraints based on
the current user state, best fit model, requested appliance,
user convenience, and current electric load. The algorith-
mic framework is introduced in Section VI.

o In Section VII we perform a case study instantiating the
improved EMS to schedule a continuous cycle deferrable
appliance load and assess the performance in terms of
appliance activation delay and user comfort.

II. RELATED WORK

Current work in residential demand-side management fo-
cuses on peak load reduction through load shifting. Load
shifting techniques emphasize appliance scheduling on a sin-
gle residence or on multiple residences using home energy
management systems (EMS) that take advantage of two-way
communication between the home and the grid. EMS agents
present an interesting model predictive control application
since they must schedule appliance loads subject to constraints
defined by the optimization framework. Depending on the
scale, the framework can be centralized or distributed. On
a neighborhood level, each individual user may define pref-
erences by setting appliance operating modes and activation
times which can be compared to the total energy cost set by
the utility as a function of market demand [9]. Since the cen-
tralized problem requires extensive information of individual
user appliance preferences and energy cost as a function of the
scheduling preferences of all neighborhood users, the solution
to this type of problem is non-trivial. [10] discusses the
limitations of centralized methods in terms of computational

(]

complexity and incentive compatibility offering a distributed
mechanism that takes into account day-ahead allocation as
well as individual real-time consumption in the scheduling
of appliances by EMS agents. The distributed optimization
framework allows the problem to be convex under the free
market assumption that utility pricing will drive user self-
interest thereby decreasing grid operational costs.

However, the focus on user self-interest as pertaining pri-
marily to cost minimization and comfort defined by appliance
operation, does not take into account the variability in demand
due to human daily behavior. For example, [11] derive energy
consumption scheduling algorithms using Nash equilibrium
to minimize cost and peak to average ratio by deferring
“shiftable” appliance loads as an alternative to changing resi-
dent energy consumption. Though simulation results success-
fully show a reduction in overall consumer cost, consumer
satisfaction outside of cost and appliance duration parameters
are not assessed. Similarly, [6] develops an energy manage-
ment model using coevolutionary particle swarm optimization
to schedule “must-run” resistive loads as well as loads as-
sociated with PHEVs, temperature systems, and pool pumps.
In this framework, the consumer must define the monetary
benefit of a unit of energy usage as a means of quantifying
personal comfort based on ambient and water temperatures
as well as PHEV charge. These parameters then determine
the cost of “undelivered services” taking into account accept-
able temperature gradients, water discharge, PHEV discharge
under the constraint of tariffs set by the utility. However, in
practice, user engagement in defining the “utility” of specific
optimization constraints as an indirect parameter of comfort
may not be straightforward. Automatic detection of user
comfort constraints offers an improved solution but is subject
to variability. In [12] appliance cluster scheduling based on
time of use probabilities and type is demonstrated under three
different pricing constraints. Scheduling is only considered
for interruptible pre-emptive devices under dynamic pricing,
feed-in tariffs, and net sale-net purchase energy programs.
In this formulation, appliance time of use probabilities are
approximated over a constant schedule in an off-line manner
and do not take into account how appliance time of use
changes on a daily basis. In fact, [13] showed that appliance
times of usage presented a key challenge to effective learning
of appliance operating characteristics as they presented several
behavioral regimes. In other words, appliance behavior varied
depending on the household, time of day, and make and model.
For example, the duty cycle of the tumble dryer is a function
of size and composition of load. While [13] demonstrated
a means of learning household characteristics by learning
appliance behavior, their work emphasized the need to learn
higher level human behaviors driving appliance usage as an
improvement to current art.

Research combining behavioral sciences and demand re-
sponse are limited to offline studies based on data mining
of survey or testbed sensor data to gain insight on human
activities and identify patterns in sensor data [14]. [15]
developed hierarchical activity graph based models using
American Time Use Survey (ATUS) and Residential Energy
Consumption Survey (RECS) statistics dependent on num-
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ber of household members, gender, age, employment and
time. [16] estimated comfort requirements for optimization
of schedules via information from GPS, social media, and
load patterns. Using two smart home testbeds fitted with
motion, temperature, water temperature, stove, and power line
sensors, resident activity as a function of sensor triggering
was found to be directly proportional to energy consumption
[17]. While [17] used demand to determine human behavior,
studies utilizing behavior to determine demand and schedule
loads have been relegated to case studies on specific distributed
energy resources or on passive visual energy feedback. In
[18], using testbed data from [17] and [19], a case study to
find optimal battery charging and discharging is demonstrated
successfully supporting a justifiable need for further behavior
based demand response study.

Since demand is a function of behavior, accurate load
prediction requires the use of robust human behavioral models
which can be used in algorithms to recognize and differentiate
individual activities at a given time. While not a direct focus
in demand response applications, human behavior recognition
has been a significant topic of interest in artificial intelligence
applications. Though human behavior is nonlinear in nature,
aclivity recognition methodologies allow for identification of
informative features in daily consumption patterns. State-
model based approaches discretize human behavioral routines
as a model based on a finite activity state space and use statisti-
cal methods to train the model indirectly through observations.
The models are then evaluated by calculating the likelihood
that a given model has generated the sequence of observa-
tions [20]. Evaluation is conducted using the maximum likeli-
hood estimate or the maximum a posteriori probability [21]. In
particular, Hidden Markov Models (HMMs) provide a natural
probabilistic framework to represent resident behavior as it
has been used extensively in human driven applications such
as surveillance, gesture based human computer interfaces, and
patient monitoring [21]. Additionally HMMs allow for general
models to be built from observations which are a function of
complex human behaviors. In [22], [23] general models built
from training sets, were able to discriminate between human
activities from test data to accuracies above 81%, and 91%
respectively.

Taking into consideration the success of dynamic activity
recognition models, we build upon previous work to im-
prove energy management systems (EMS) with high level
behavioral activity as the driver of resident consumption.
While understanding human activity is not the goal of this
study, identifying activities which directly impact home energy
usage enables the resident control agent to optimally schedule
appliances according to the user in relation to demand response
programs.

III. ENERGY MANAGEMENT SYSTEM (EMS)

The EMS is an intelligent automated control agent that
dynamically learns consumer behavior, analyzes and predicts
future behavior, and schedules and controls appliances with
respect to behavior and grid signals. Central to the system
is the resident energy consumer. Their habits and activities of

daily life are what drive their consumption profile. It therefore
becomes imperative for the intelligent agent to learn typical
user behavior based on patterns in load profiles. The system
does so by comparing sensed electricity consumption to pre-
built general consumer models and prior information with
respect to the inventory of appliances in the home. Following
a training period and successful dynamic model detection, the
agent continues to receive consumption information allowing
the system to estimate current and future resident states based
on the model. However, decoding consumer activity alone
is not the objective of the EMS. The goal of the EMS is
to perform appliance scheduling based on current consumer
activity, appliance energy requests, grid signals, and user
convenience parameters. The system thus serves to interface
between complex systems in order to make decisions with
respect to the activation of cyclic “shiftable” loads to improve
residential consumer demand response.

Consumer Activity: Human behaviors exhibit hierarchical
structure according to goals and recursive implementation of
sub-goals [24]. In the home, activities of daily life drive energy
consumption dictating which appliance will be initiated at any
given time. Realizing the significance in encoding hierarchy,
we propose a modeling framework that captures dependencies
between finite human activity units and appliances. In other
words, we can simplify residential behavior into sequences of
activity states that cannot be directly measured. For example,
activity states such as hygiene, cook, clean, or rest each have
unique effects on consumer load profile as well as which
appliances may be activated. Different sequences of activities
characterize user schedules and provide a basis for building
a dictionary of typical consumer models used by the EMS to
detect daily user behavior and make scheduling decisions.
Appliances: Each consumer activity influences appliance us-
age. For example, if a user is cleaning, they are likely to use
appliances such as a vacuum, a washing machine, or a steamer.
Given the inventory of household devices, we capture these de-
pendencies by grouping short operating appliances according
to their most likely activity. Doing this allows us to compress
the state space of these “on-off” appliances by activity. Larger
appliances that have longer operating periods are classified
as either “shiftable” or “non-shiftable” activity independent
or dependent long-term devices. These devices may operate
over multiple behavior activities and cannot be compressed in
state space. In fact, the EMS seeks to control and schedule
“shiftable” larger appliances due to their heavy influence on
load profile. We then build a table of all possible combinations
of compressed activity-short-term-appliance grouping as well
as the uncompressed larger appliance states, allowing us to
characterize activity influenced consumption load profiles.
Grid Signaling: Consumption constraints are taken as an input
to the control agent directly from the AMI. These constraints
may be consumption restrictions (kWh) placed in the form of
an alert or as a function of TOU or dynamic pricing (DP)
schemes. The EMS takes into account the constraint when
making scheduling decisions.

Consumer Convenience: The resident may also set a con-
venience constraint with respect to the activation delay of
“shiftable” appliances should the grid constraint be strictly
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Fig. 1: Consumer-centric Energy Management System

met. Depending on the current activity of the user, deferring
loads to a later time based on grid conditions alone may
be undesirable. Thus, consumer constraints allow the user to
have a degree of freedom with respect to appliance scheduling
without having to override the energy management system.
To understand how consumer activity, appliances, grid signal-
ing, and consumer convenience interact in the EMS, one may
consider the case where a resident makes an energy request
for the activation of a heavy “shiftable” appliance. At the
instant of the request, the EMS retrieves the present aggregate
consumption as well as grid signals from the AMI. Given that
the best fit behavioral sequence has already been detected, the
EMS can predict future consumption states based on activity-
dependent load inferences and compare these states to grid
signals. The EMS calculates the likelihood that the additional
requested load results in residential consumption in excess of
the grid signal constraint for the duration of the requested
appliance operational cycle. If the likelihood of the exceeding
the grid signal is within an additional parameter defined by
the user, the appliance is scheduled to run. If not, the load is
deferred as the system waits for the next available time trial
and AMI power consumption observation.

IV. STOCHASTIC MODEL

We can build a hierarchical model for the consumer as
a vector-valued homogeneous Markov chain that includes
activity and individual home appliance random variables cor-
responding to activity-appliance combinations discussed in
Section III. The Markov chain, by definition, is discrete in time
and assumed to be discrete in state-space. Components of the
vector valued chain are also assumed to behave Markovian.
Each individual random variable used to construct the model
is presented and summarized in Table I.

A. Consumer Activity

We define a categorical random variable A of consumer
activities as a homogeneous Markov chain, discrete in time and
discrete in space A={A;=a;,t,icN*} where t is time, and
a; is an activity label from a finite set of outcomes in the state

TABLE I: Model Random Variables and Parameters

Random Variable State Description Parameters
A daily activity P(Ap41|Ae)
vi short-term appliance P (Vi IVY)
C > Vv P(Ct+1|Ct, Ar=a;)
IGSVHA
E shiftable appliance P (Et+1|E¢, At)
o non-shiftable appliance P (Fyy1|Fy)
Z Zi = [Ar, Cr, By, 1Y) T P(Zi41121)
X aggregate consumption Xi=Ci+Ei-+Fy

space Sa. These activity labels or states include activities of
daily living such as dressing, dining, etc. Since A is a temporal
process representing a sequence of daily living activities, we
structure A as a “left-right” non-ergodic (Bakis) chain where
the state index increases or stays the same as time increases. A
is described by the transition matrix P (A;;1|A;) which has
the characteristics of being a max(S4) x max(S4) diagonal
band sparse matrix with an absorbing terminal state @ ax(s)-
The sequences of A are based on permutations of activities
without repetition. These sequences terminate on particular
activities (i.e. sleep or leave) to differentiate between times
of day. For example, in the morning a consumer may wake
up to perform hygiene tasks, dress, and leave for work, where
leave represents the end of the morning sequence. Possible
repeated activities such as hygiene or dress are enumerated
and may have different permanence times described by self-
looping probabilities in the Markov transition matrix of A
which are adapted from [25], [26], and [15].

B. Taxonomy of Appliances

In accordance with the work presented in [11], we describe
a taxonomy of the types of appliances present in the home.

« Activity-dependent short-term appliances

« Activity-dependent long-term “shiftable” appliances

e Activity-independent long-term “non-shiftable” appli-

ances

We construct individual appliance Markov chains for each
type based on the quantized Watt value of individual
operating modes respectively. In other words, for a specific
appliance, we identify discrete states based steady-state power
consumption levels from sub-metered appliance curves and
manufacturer specifications. Operational start and end times
for each appliance are built in the Markov chain transition
matrix. State transitions are estimated based on the frequency
of transitions from one power level to another relative to
the total number of transitions from the power level under
consideration as demonstrated in [27].

Dependent Short-term Appliances: We define a random
variable V!, where 1 < | < L represents each short-term
activity dependent device, with L total short-term appliances
present in the home. V! = {V}! = v;, 4, k,l€Nt}, described
by the transition matrix P (V,|V}!) and state space Sy:. v;,
the state of V;! at any given time trial, is equal to the con-
sumption value for the state of appliance [. We may partially
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build the vector-valued Markov chain for short-term appliances
that depend on activity A as [A;=a;, Vi'=v},..., V;E=vF]T,
where teNT and a;€S4, v}€Sy1, and vFESyL. Short-
term activity dependent devices are activated during specific
behavioral activities. For example for the activity cook, the
appliances stove, oven, toaster, coffee maker, blender would
constitute short-term activity dependent appliances. While for
the activity workout, dependent appliances would include the
treadmill, elliptical machine, or stationary bicycle. However,
for a large inventory of short-term devices, the vector-valued
Markov chain grows quickly in complexity. In this context, as
the number of appliances increase, the number of individual
device states corresponding to consumption level increase
directly affecting transition matrix dimensions as well as
the number of mathematical operations used to calculate the
forward probabilities described in Section V. Complexity also
becomes an issue when individual devices are assumed to
operate with activation dependencies, as is the case with
an entertainment system. In this example, turning on the
television may also turn on the sound system, recording device,
and the game console, requiring additional activation sub-
chains to be encoded in the system model. For these appliance
clusters, the state space can quickly become intractable. To
alleviate complexity we note that the sum of the V! for a time
slice and affiliated activity results in a short-term appliance
aggregate consumption. This allows us to compress the state
space by defining the partially defined vector-valued Markov
chain in terms of the random variable C, where we assume:

C= Y Vi (1

lESVt|A

where Sy 4 is the set of appliances involved in
the activityy. We can solve to get the elements of
the transition matrix of C for a particular A=a; by
P(CL+I»AL+1:ai|CLvAL:ai):P(CH-llCL,AL:ai)

=P( > Vi A=ail Y V,,’,At=a1) @

lGSvllA lGSVHA

=3 II Pv4avh 3)

lGSVlIA

for a given activity A = a;. Since we compress the state
space by taking into account clusters of activity-dependent
appliances defined by aggregate power consumption, appliance
activation dependencies for a specific activity have no net
effect, allowing us to achieve the same system model as
when the devices are assumed to activate independently. When
Aiy1=a; # Ay=a; we use the stationary distribution

N AR
Jim =% P(Crm, |Co, Av=a;) @)
m=1
as the initial distribution of moving into the new activity and

appliance dependencies. The state space S¢, is defined by

L
states ¢;j, where j ={1,..., [[ maxSy:}
i=l
Dependent Long-term “Shiftable” Appliances: We

are interested in scheduling these appliances with our control

agent. “Shiftable” otherwise known as deferrable loads
are characterized by long operational cycles, high load
profiles, and function without interruption once activated.
These appliances are dependent on activity A. Examples of
“shiftable” activity-dependent loads are the washing machine
and the dishwasher which are likely initiated when the user
is in the activity state “clean”” In our model we define
these loads as E={F;=e,,,k,m € NT}, described by the
transition matrix P (Fyy1|Fy, A;) and state space Sg. The
transition matrix is characterized by the operation time spent
in each power state. Once initiated for an activity sequence, a
memory variable is toggled between 1 and 0 to keep track of
a finished appliance cycle. These appliances are not included
in the vector-valued chain, but the “shiftable” appliances that
the user may not seek to control, are included. For generality,
we will include a “shiftable” appliance for both the controlled
and uncontrolled case.

Independent Long-term ‘“Non-shiftable” Appliances
“Non-shiftable” or non-deferrable loads are loads which
operate irrespective of the activity and are essential for the
proper function of the home. For example a refrigerator
must always be on to ensure the safety and quality of food
for the inhabitant. These loads are not controlled by the
energy management system as they must operate at all times.
F = {F, = v;,k,n € Nt}, is described by the transition
matrix P (F,4|F;) and state space Sp.

C. The Complete Model

We now proceed to define the model in its en-
tirety, based upon the definitions of random variables
A, C, E, and F. The vector-valued Markov chain
Zy=[Ay=a;,Ci=ci, Ey=c;, Fy=f;]", where teNt repre-
sents the hidden state and the observation X;=C;+E;+F,
is the aggregate residential consumption. To fully char-
acterize the HMM transition matrix P(Z;41|Z,) =
P(Aiy1,Cii1, By, Fiy1|Ae, Cr, By, Fy) we use the chain
rule.

For At+1=At, P(Zt_.fllZ{,):

P(A11]|A)P(Ciy1|Cr,A) P(Ey s
For Ayp1#Ay, P(Z41|Z)=
P(Ap| A (i, A1 ) E(F, Agr ) P(Fea |[Fy),  (6)

for 1<i< max(S¢) and 1<j<max(Sg). ll¢ and Il are the
initial distribution of the aggregate consumption of the short-
term activity dependent appliances and the initial distribution
of the single activity dependent “shiftable” long-term appli-
ance. The element-wise initial distribution of the HMM is

Ey,Ay)P(Fiya

E). 5

Uz, =la,,01,E1,5
=Is(A1=a)llc (i, A1) g (4, A E(k). )

for 1<a<max(Sa), 1<i<max(S¢), 1<j<max(Sg),
1<k<max(Sr). The emission matrix is defined as:

P(Xi|Z,) = P(X|Ai, Cy, By, F). )

The emission matrix is built by identifying which com-
binations of C;, E;, and F; result in the observation
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Fig. 2: Activity appliance dependencies, including short-
term,“shiftable,” and “nonshiftable” loads which sum to the
total consumption per time slice.

X;=Cy+E;+F;. This matrix has dimensions of max(Sz) x
max(Sx).

V. MODEL AND STATE DETECTION

The proposed energy management control agent operates
by detecting and classifying the resident into a particular ref-
erence model \; defined by (115, P(2%),12), P(X,|Z{"))
for 1<i< max(S),) from a dictionary of models based on the
time of day, within a training period 7". The set of possible
models are derived from unique sequences of activities A cor-
responding to possible consumer schedules and employment
demographics. Different sequences result in different activity
transition probabilities, P(Affﬁl |A§')), which are propagated to
the calculations of H(Z'),P(Zt('+)1|Zt(')),and P(X|Z") used
to define a specific A; as outlined in Section IV. Following the
training period 7', the identified model \; is used to calculate
the maximum likely current joint state of total home appliances
and activity Z; which allows the system to predict the like-
lihood of future consumption observations for a rolling time
horizon. The resulting load profile predictions inform real-time
decisions with respect to the scheduling of “shiftable” loads in
light of consumption limits defined by demand response and
user comfort discussed in Section VI. In order to calculate
the best fit reference model, \; for a consumer we utilize
the forward algorithm for HMMs to calculate the posteriori
probability based on a sequence of consumption observations
during the training period 7.

A. Consumer Model Detection

Given the observation sequence: X1=x;, ..., Xp=x,, we may
calculate: a(s)=P(X1=xj, ..., Xr=1,, Z);=s) for a spe-
cific model \; defined by (11, P(2%),2(), P(X,|2{))
or in matrix format: (ITy,,P),,B,,). For the first time step

we calculate the probability of the joint distribution of the first

6

hidden state and consumption observation using the initial dis-
tribution of the hidden chain. o\ (s)=P(X,=z;, 2" =s) =
1) () P(Xy =25 2{"=s), or

=11} - Py, )

We may generalize the remaining forward calculations for
1<t<T —1 as

agfr)l:agi) . (diag(Bxl.-f-l:m)/\i) ) P/\i' (10)
To classify the user we evaluate
3 o), (11
TES  N;

where T is the training period. The model ); that results in
the maximal value is then identified as the approximate user
reference class based on the sequence of real-time observations
sensed by the system.

B. State Estimation based on Model

Once a reference class for a sequence of training obser-
vations X;=x;,..., Xp=x,, is determined (\;=\), the state
estimate may be calculated by propagating the forward a pos-
teriori probability value for the new real-time consumption ob-
servations using the statistics, (IT), Py, B,), of the reference
class. Since we have identified the best fit model according to
the resident’s consumption, we drop the \; in our notation in
this section to increase readability. We can scale the forward
joint probability value to obtain a distribution of states. In
other words, given the sequence X1 1=x,..., X;=x, we are
interested in calculating

ay(s)

> a(r)

reSy

P(Zl:'5|X'I'+l:wu1"'1Xt:wb): (12)

The state Z,=s that results in the greatest probability given
the observation sequence is defined as the maximum likelihood
estimate.

VI. CONTROL

An “on/off” appliance control algorithm is developed based
on consumer classification and the current hidden state esti-
mate to determine the soonest available time slice to sched-
ule “shiftable” must-run loads under consumption and user-
defined constraints.

A. Grid Signals

We represent a consumption constraint z, a maximum Watt
value, which may be a function of utility pricing programs or
grid alerts. To schedule a deferrable load we must compare
the sensed current user consumption, X;, with the constraint
as well as the energy use profile of the deferrable load itself.
In this scheme, the “shiftable” load profile is deterministic as
it follows a defined operational cycle, d;, for 1 <¢ < N upon
activation. We are interested in calculating:

P(XL Z Z*dt),
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which corresponds to the joint state Z;=(Ay, Cy, Ey, Fy) for
the combinations of Cy, F, F; that produce a total wattage in
excess of the consumption constraint z — d;. We can thereby
partition the state space of Z; into two sets, the “taboo” set,
Hy corresponding to X; = C;, + E;, + F;, > z — d;, and its
complement H¢,. We then rearrange the states of P(Z,1|Z,)
to the following format:

Tz(1,1) Tz(1,2)

P(Zyy1|Z) = Tz(2,1) Tz(2,2)

(13)
where Tz(1,1) represents the sub-matrix of states which
transition from Hg—HS, Tz(1,2) represents the sub-matrix
of states which transition from Hz—HS,, T7(2,1) represents
the sub-matrix of states which transition from H%—H, and
Tz(2,2) represents the sub-matrix of states which transition
from Hz—Hy [28].

The total probability of transitioning from H, to the set
H; within a finite time horizon, N, defined by the operational
cycle of d;, can be calculated using the sub-matrices of the
rearranged transition matrix as

N
Pr,az(N) = Y Y Tz(1,1)" '« Tz(1,2). (14)
se8Sy n=1
This probability provides the energy management system a
means of predicting the user consumption profile for a finite
time horizon, N, as well as a probability measure as with
respect to the consumption constraint.

B. User Convenience

We can further implement an additional degree of freedom
over the control of scheduling by taking into account user
convenience defined by ¢ which is a constraint placed on the
probability of transitioning from HY, to the set Hz; within the
operational cycle of the appliance we seek to control. In other
words, the consumer convenience constraint allows the user
to loosen the grid defined consumption constraint by allowing
the resident consumption to hit states above threshold z — d;
within a probability of ¢. In other words,

N
Pr,az(N)= Y Y Tz(1,1)" '« Tz(1,2) <q (15)
SESH n=1
Thus, the user has the ability to tune the tradeoff between
convenience and consumption threshold rules, affecting the
resulting delay in activating the appliance.

C. Control Algorithm

We outline the control algorithm based on activity sequence
detection from a library of typical user reference models, state
estimation based on the detected model and current consump-
tion, and the evaluation of energy requests constrained by grid
signals and user convenience.

e A sequence of real-time resident consumption observa-

tions are input to the EMS via the “smart” meter. For
a training period of 7', we use the forward algorithm to
calculate the a posteriori probability for a set of typical
reference models \;. Following the training period, the

model resulting in max( Y, «p(r)), is determined to
rESZ,\,-
be the closest approximate reference model.

e Based on the selected user model, we calculate the
max(P(Z=s|Xr1=%q,. .., X4=2p))=max %
to find the maximum likely state of the hiddenelvfarkov
chain, 7 for X} following the training period.

« The consumer energy request R, = r where r € {0, 1} is
dependent on the activity P(Ry|Ag). Ry = 1, represents
the request being made, while R;. = 0 is no request. For
each sequence of consumption observations, the request,
once made cannot be repeated for the next time trial or
appliance. In other words, once Rp = 1, the request
cannot be made again.

« Based upon Ry and the state estimate of Z; at the time
of the request k, we determine if the state Z; € Hy. If it
is in the “taboo” set we wait to update the state estimate
for the next time trial until the state is no longer “taboo.”
Once Z€H¢,;, we find the total probability of hitting the
set Hz given that we started in a “safe” set.

o Activation of the appliance occurs when the total prob-
ability, Pr,1,2)(IV)<q of hitting the set H; given that
we started in HY.

VII. NUMERICAL RESULTS

We present the results of an EMS case study for an
evening time of day sequence of activities comprised of
one hundred fifty discrete time trials with each time trial
representing a five minute interval. The individual activity
A and the household inventory of short-term appliances V'
is presented in Table II. With the aP liance inventory, the
reference  models, Alw(Hz(l),P(Ztil Z,F”),P(X¢|Zfl))),
No~(lln, P(ZNZ), P(X0|Z,2), and
N~ ey, P(ZE0 |22, P(X,|ZE)))  used  for  model
detection and state estimation are:

Evening Model 1/PM1 (A;): This model is derived from the
activity sequence A= hygiene, dress, cook, dine, clean,
rest, and sleep.

Evening Model 2/PM2 (A2): This model is derived from
the activity sequence A®)= hygiene, dress, leave, hygiene,
dress, and sleep. We differentiate repeated activities as
separate states with different self-looping state probabilities
and characteristics. For example hygiene following the state
leave may be longer in duration than hygiene upon arrival.
Evening Model 3/PM3 (A3): This model is derived from the
aclivily sequence AB) = hygiene, dress, workout, cook, dine,
clean, hygiene, dress, rest, and sleep.

To benchmark performance, reference model \; is used to
generate 100 sample functions, or aggregate consumption
sequences over 1<k<150 time trials. We keep track of the
hidden joint state Z;=A;,Cy, Fy, F;, as well as the visible
consumption emitted by the chain, X;=C;+ FE;+F;. For each
sequence, we use a random function to generate a request R,
as a function of activity P(R;|A;). For this study we set the
grid alert consumption constraint to z = 5kW and examine
the effects of the consumer parameter by analyzing system
performance for 0<¢g<1.
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TABLE 1II: Activities and dependent short-term appliances
with associated wattage.

Activity  Dependent Devices Range (W)
leave alarm, lights 0 — 1000
hygiene  electric water heater, hairdryer, lights 0 — 5000
dine toaster, microwave, lights 0 — 3700
rest tv, lights 0 — 650
workout  treadmill, tv, lights 0 — 2650
dress iron, lights 0 — 1600
clean electric water heater, vacuum, lights 0 — 4000
sleep alarm, lights 0 — 1000
cook toaster, stove, coffeemaker, microwave, lights 0 — 7500

TABLE III: Long-term appliances, taxonomy, and associated
wattage.

Appliance “Shiftable”  Range (W)
electric vehicle supply (EVSE) yes 0 — 12000
heating and air conditioning (HVAC) yes 0 — 40000
dishwasher yes 0 — 1500
refrigerator no 0 — 400

A. Model Detection Performance

Using reference models A1, A2, and A3 to seed and generate
three sets of 100 sample functions, we test the performance
of the forward algorithm in detecting the best fit model. As
described in section V, we evaluate the a4 (s) statistics along
all states with respect to the model parameters of Aj,\2, and
A3 for a single sample function. We then calculate the sum,

>~ ax(s), along all states for each model and for each time
s€S)
rial in the sample function. We compare the value amongst

all models considered. The model that results in the maximum
value of > ai(s) is the “best fit model” for that particular
SES)

time trial. We repeat this process for all 100 samples generated
by an individual seed model to validate the accuracy of the
model detection algorithm. To produce figure 3 for each time
trial in a single sample function we calculate the detection
frequency of each model and repeat the process for the set of
100 sample functions seeded by the model parameters under
consideration.

We are interested in studying the rate of convergence of correct
model detection for each seed model which differ relative to
one another based on the sequence and duration of behavioral
activities. For example, evening model 2, or Ao, is detected
with a confidence exceeding 90% by the first time trial. This
is due to the fact that the user leaves, which is an activity
unique to \» relative to A\; or Az. Furthermore, this particular
model has a load characteristic influenced by the electric ve-
hicle supply equipment (EVSE) fast-charging operation mode,
followed by a period of little consumption during the activity
leave. As shown in table III, \; is detected with over 90%
confidence by the 8th discrete time trial corresponding to 40
minutes. A3 is detected with over 90% confidence by the 10th
discrete time trial corresponding to 50 minutes into the activity
sequence. The rate of convergence between A; and A3 may be
due to structural similarities between models as well as activity

e
%

Frequency
e
N

04 " L L 1 1 " L
0 5 10 15 20 25 30 35 40

Time Trial

Fig. 3: Probability of detecting correct model for respective
self-seeded sample functions.

TABLE 1V: Model Detection: Time to 90% Confidence Levels

Evening Model Interpolated Time Trial Minutes
A1 (PMI) 7.3332 36.6660
A2 (PM2) 1 5
Az (PM3) 9.6660 48.3300

sequences that have comparable consumption profiles. Thus,
to achieve model detection within 90% confidence requires
longer training periods depending on the model similarity.

B. Activity Influence on Consumption

To demonstrate the influence of human behavioral activity
on load profile we examine the total consumption for the
inventory of short-term and long-term appliances presented in
tables II and III for individual human activities. For sake of
clarity we present the expected consumption of two behavioral
activities which can easily be extended to many. Figure 4
shows the expected consumption for the activities cook and
rest for a time horizon of 5 trials corresponding to 25 minutes
following the detection of the current wattage observation at
time trial ¢ = 0. The expected value for each activity is calcu-
lated by taking advantage of the hierarchical structure of each
individual activity in terms of the activity dependent short-
term devices and the activity dependent and independent long-
term devices. We then examine the individual activity Markov
chains which are homogeneous and discrete in state space
allowing us to take advantage of the Chapman-Kolmogorov
equations expressed as matrix multiplications describing the
distribution of moving from the state at ¢ = 0 to other
states. Knowing the distribution allows us to calculate the
expected consumption value by weighting the distribution with
the discrete wattage value of each state, thereby obtaining the
mean consumption at each time trial in the horizon considered.
Note at time trial £ = 0, the activities cook and rest both
produce a total consumption observation of 41.4 kW. However,
after time ¢ = 0, cook and rest result in very different
expected consumption observations. This is because cook,
while producing a wattage observation of 41.4 kW, contributes
to larger consumption observations due to additional appliance
dependencies that rest does not include as illustrated in table
II. Since the expected consumption is a function of the matrix
multiplication form of the Chapman-Kolmogorov equations,
with time the distribution decreases and reaches the stationary
distribution for each individual activity.
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Fig. 4: Expected consumption over a time horizon of 5 trials
for activities ‘cook’ and ‘rest.
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Fig. 5: Dishwasher scheduling comparison of visible Markov
chain with detected model and estimated state.

C. Activity-Informed Control

We study the resulting scheduling control of the EMS for
a sample function seeded by A, as outlined in the procedure.
Figure 5 presents a single sample function selected from the
set of 100 simulations seeded by the model parameters of
A1, also known as PM1. We select this particular sample to
demonstrate the robustness of our control framework with
respect to aggregate consumption and appliance scheduling
despite inaccuracies in activity detection. In figure 5, we illus-
trate a case where the user prioritizes consumption constraints
over appliance activation resulting in activation delay. The
consumption constraint, labeled as “watt threshold,” is rep-
resentative of a pricing threshold via tiered pricing programs
set by the utility. For example, the watt threshold may indicate
a pricing shift from baseline to medium or peak consumption
allowance. The cost savings would then be directly propor-
tional to the reduction of time spent above the pricing defined
consumption threshold. The first subplot of figure 5 shows
the evening behavior of the user without the proposed energy
management system (EMS). At the ¢ = 58 time trial following
behavior model detection outlined in section V, the user
requests dishwasher activation. Since there is no EMS in place
the dishwasher is activated upon request resulting in a load
profile exceeding the consumption threshold from ¢ = 57.83
to ¢t = 59.14. This threshold is indicative of a specific tiered
pricing program.Since tiered utility pricing programs vary with
respect to location and region, we generalize our simulations
to a consumption threshold which can be adapted to pricing
depending on the utility provider. In the case of dynamic or

time of use pricing, the consumption threshold represented
as a constant would be replaced by a function specific to
market demand or utility pricing respectively. In the second
subplot of figure 5, the identical activity influenced load profile
featured in the first subplot is considered under the control
of the EMS wherein we demonstrate control over the single
appliance dishwasher. The user similarly requests activation
of the dishwasher at £ = 58 time trial. In this subplot,
the consumption threshold is exceeded from ¢ = 57.83 to
t = 58.18. However, we notice that the time spent above
threshold is less than in the case without the EMS. In other
words, irrespective of the scheduling request to activate the
dishwasher, at time trial ¢ = 58, the system was headed
in an aggregate consumption condition in excess of the the
consumption threshold set at 45kW. Following the request
at t = 58, the EMS takes into account the probability of
exceeding the consumption threshold level for the next 5 time
trials and waits until the probability is low. In the fully visible
Markov chain in the first subplot of figure 5, the household
consumption, including the tagged changes in behavior at
time trial ¢ = 57 and time trial ¢ = 60 are provided.
In the hidden Markov chain, both of these human behavior
activity transitions are not detected. In figure 6 we observe
the likelihood of a particular human behavioral activity at each
given point in time. At ¢t = 57, there is a 0.7288 probability
of the activity being cook following t = 56 where cook was
detected with a high probability of 0.9948. At ¢t = 57 , there
is a .2532 probability of the current activity being dine and an
even smaller probability of 0.018 of the current activity being
clean. Therefore, at t = 57 the maximum likelihood estimate
of human behavioral activity is determined to be clean which
remains unchanged from the detected behavioral activity of
the previous time trial. Furthermore, at time trial £ = 60, the
maximum likelihood estimate determines cook to once again
be the current activity with a probability of 0.7356 in contrast
to the 0.2017 probability of rest and the 0.06097 probability of
dine. Once again the results reflect that the framework makes
reasonable estimates on the current activity based on aggregate
consumption characteristics using the maximum likelihood
despite some inaccuracies in detecting changes between states
that may display similar load profiles. However, in later time
trials beyond ¢ = 66 we see the activity rest increasing in
probability which illustrates that though the HMM framework
may not detect behavioral activity at a high resolution, after
some time and updated observations, the correct behavioral
activity will be detected with some delay which influences the
scheduling EMS control system.

The goal of the study is to utilize human behavior schedules to
infer demand for a rolling time horizon in order to schedule
appliances under consumption constraints defined by utility
pricing and consumer preferences. In the case where consump-
tion thresholds are prioritized over consumer comfort with
respect to appliance activation delay, the control mechanism
schedules the dishwasher to run at time trial ¢ = 68, 50
minutes following dishwasher appliance activation request.
Figure 5 shows the scheduling and the resulting aggregate
power consumption following dishwasher activation at a time
of low load demand.
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Fig. 6: Single sample function activity probability.

D. Comfort Consumption Tradeoff

We present the results of a simulation study that takes
into account the consumer comfort level in terms of the
activation delay with respect to appliance requested as well
as the consumption threshold constraint. This study differs
from previous work in that the activity informs the future
consumption values for a time horizon that is dependent on
the operational cycle of the appliance being controlled. In this
study we continue to study the control of the dishwasher in
terms of the delay in appliance activation given consumer com-
fort and the expected time in units of time trials, where each
time trial represents 5 minutes, of the aggregate consumption
exceeding the consumption threshold of 45kW. From figure
7 we examine the delay in appliance activation as a function
of the consumer comfort parameter we have generalized as
“probability threshold.” In these results, taken over 100 sample
functions for 1001 probability thresholds ranging from 0—1 in
uniform increments we compare and contrast the performance
results of the fully visible Markov chain with the hidden
Markov chain detected by the EMS framework. We see that
the relationship occurs in discrete steps which is the result
of the discrete construction of the chain and an effect of
its Bakis characteristics. However, we see that the hidden
Markov chain performs relatively well with respect to the fully
visible chain but degrades for probability “comfort” values
between 0.363 to 0.576 indicating premature activation of the
appliance. To examine how the premature activation of the
appliance affects the consumption threshold constraint we plot
the mean time above the consumption threshold of 45 kW with
respect to the probability threshold and again examine the
results obtained for probability “comfort” values within this
range. In figure 8 we notice within the window of “comfort”
probability thresholds from 0.363 to 0.576, the EMS early
activation, unsurprisingly results in larger times above 45kW
consumption threshold. This is due to the fact that the HMM
framework has less information that the fully visible chain
resulting in some degree of error that may be inherent to
the simulation. In real systems, increased sample data with
respect to consumption and behavioral activity on a daily
basis offers some alleviation. The tradeoff between the average
discrete time spent above consumption threshold as a function
of delay is presented in 9. We see that the time spent above the
45kW is inversely proportional to the average activation delay
calculated across the “comfort” probability constrained sample
functions. In other words, the “comfort” probability allows
a degree of freedom for the consumer in terms of choosing
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device activation irrespective of the consumption threshold set
by the EMS.

VIII. FUTURE WORK

Future work in this project can take many interesting direc-
tions. In the paper presented, we considered the control and
appliance scheduling for the dishwasher. In reality, different
heavy consumption long-term appliances may be considered
in other case studies. For example, the HVAC, which we have
included in our case study as a long-term activity dependent
appliance, represents a major load that has been the target of
discretionary utility programs within current demand response.
In the study presented, we did not seek to control this
particular appliance due to dependencies with respect to the
external temperature and weather, but we did include it as an
influential contribution to the aggregate load. Additionally, our
residence case simulation study presented the EVSE as a load
that is used simply to charge the car with a dependency on
consumer occupancy via the detection of the activity leave. We
did not consider using the car battery or an external battery as
a distributed energy resource (DER) in our scheduling frame-
work to offset peaks. Future work seeks to build upon this
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study with the inclusion of energy resources such as energy
storage systems and photovoltaic cells whose lifetimes depend
on charge/discharge stress as well as cloud cover respectively.
In addition to further appliance case studies, alternative EMS
frameworks may also be considered using different mathemat-
ical models for activity detection and appliance scheduling.
Unfortunately, frameworks based on Markov models suffer
from the curse of dimensionality. In other words, the amount of
states with respect to individual users, behaviors, and appliance
states quickly becomes intractable impacting the optimization
process used to implement system control. Recall, in Section
VI-A, we calculate the probability of exceeding a power grid
defined threshold over a finite horizon corresponding to the
cycle duration of a long-term appliance. The complexity of
this process in terms of the number of operations required
for calculation grows with the number of states where each
time slot requires O(S x S) operations [29]. Calculations are
especially difficult when scaling the framework to a neighbor-
hood or residential group level. Large state spaces correspond
to lengthy estimation, slow convergence and high complexity
of optimization. To scale up our model we must reduce
the model or use alternative techniques. Alternatives such as
graph signal processing approaches as presented in [30] may
alleviate complexity issues. We leave a thorough evaluation of
alternative techniques in the scenario described in this paper
for future work. Finally incorporation of complementary work
in non-intrusive load monitoring may inform better generalized
appliance models. For example, [31] generalized appliance
models from sub-metered appliance datasets of different makes
and models of devices using supervised learning techniques
followed by sampling to obtain averaged appliance instances
depending on the appliance type. The general models were
then used to disaggregate load curves from publicly available
consumption datasets. While the goal of this project is to
study human activity as a driver of consumption rather than
load disaggregation, building a tagged dataset of consumption
and behavior would provide a means of evaluating load
disaggregation methods with an additional degree of freedom.

IX. CONCLUSIONS

In this paper we proposed an energy control framework
driven by consumer behavior as an alternative to price driven
systems. The EMS detected behavior according to pre-built
reference models differing in activity sequence. Following
model detection, the intelligent control agent assessed user
appliance requests based the state estimate, a grid-informed
consumption constraint, and a consumer convenience param-
eter. Results support that inclusion of human behavior as a
driver for demand affects accurate consumption prediction
which is necessary for EMS appliance scheduling. Consumer
convenience constraints based on the current state estimate
and the consumption constraint provided a means for the
resident to control appliance activation delay. A case study
demonstrated the effectiveness of the system as a whole.
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