# Mobile Efficiency for Plug Load Devices

Vojin Zivojnovic, Ph.D. AGGIOS, Inc. Irvine, CA 05/13/2014



### AGGIOS

- AGGregated IO Systems
- Team: ex ARM and Qualcomm people
- Experience: Mobile devices
- Research base: Leading experts from UC Berkeley and Princeton University
- **Business:** Independent provider of energy management and design technology for mobile, plugged, wearables and IoT



Nature

#### HOW WE DESIGN SYSTEMS ...



#### ... FOR MAXIMUM PERFORMANCE

#### HOW NATURE DESIGNS SYSTEMS ...



... FOR MAXIMUM EFFICIENCY

)S™

## **Energy proportional management**



agglos

#### Demo Video

• Mobile Device versus IP Set-Top-Box



## AGGIOS technology

#### **Unified Hardware** Abstraction (UHA<sup>™</sup>) 😵 😑 💿 🛛 Aggios Energy Lab: /home/dmista/work/uhaltools/examples/c2k/c2k.uhal 📶 Open 🍓 Generate 🛛 🙈 Search 🍸 Filter 🛛 Clocks Components Controllers 🛛 🗷 Component Inherits From Туре Filename abstract nodes 🔻 < SYSTEM 🕨 🚞 mpu <c2k.uhal> componen NAME SPACE 🔻 🚍 axi component <c2k.uhal> ADDRESS SPACE 🕨 🚞 scu <c2k.uhal> component INTERRUPT SPACE 😑 apb <c2k.uhal> component VOLTAGE SPACE ▶ 🧼 pfe <c2k.uhal> component CLOCK SPACE 🔻 🧼 tdm component <c2k.uhal> RESET SPACE 🖉 active operating-state <c2k.uhal> SCENES active <c2k.uhal> operating-point EnergyLab™ IMPACT DEFINITIONS 🔻 🕗 inactive operating-state <c2k.uhal> TASK DEFINITIONS <c2k.uhal> operating-point SCENE DEFINITIONS usbphy\_serdes\_stat component <c2k.uhal> - TRANSITION TABLE tdma component <c2k.uhal> Tools ITEST/MEASURE < timer <c2k.uhal> component SIMULATE pci component <c2k.uhal> Value Name Line number(s) 231 - 234 operating-point Node Type power 0 mW action &tdmntg\_rst.put\_in\_reset(), &tdmNTG.disable(), &tdm.disable() Properties Source Output Errors Position: (0,0)



ßx

#### MINDSPEED C2000 Residential Gateway



power/energy controlled by CLIOS



## Conclusions

- Mobile and plug load devices converge on:
  - Architectures and protocols
  - Performance requirements
  - Energy and latency requirements
- Diverge on:
  - Energy management innovation
  - Workforce expertise
  - Bill of material and design costs
  - Competitive environment



#### **Proposed Next Steps**

- Align with the mobile best design practices for energy proportionality of plug loads
- Adopt mobile design standards to plug loads and actively contribute to standard and best practices evolution
- Based on mobile practices develop
  - Reference design methodology for plug loads
  - Device prototypes and reference designs





